Abstract:
Given a linear relation (multivalued linear operator) with certain growth restrictions on the resolvent, an infinitely differentiable semigroup of operators is constructed. It is shown that the initial linear relation is a generator of this semigroup. The results obtained are intimately related to certain results in the monograph “Functional analysis and semi-groups” by Hille and Phillips.
Keywords:
linear relation, infinitely differentiable semigroup of operators, generator of a semigroup, resolvent set.
Citation:
M. S. Bichegkuev, “To the theory of infinitely differentiable semigroups of operators”, Algebra i Analiz, 22:2 (2010), 1–13; St. Petersburg Math. J., 22:2 (2011), 175–182
\Bibitem{Bic10}
\by M.~S.~Bichegkuev
\paper To the theory of infinitely differentiable semigroups of operators
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 2
\pages 1--13
\mathnet{http://mi.mathnet.ru/aa1176}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2668123}
\zmath{https://zbmath.org/?q=an:1244.47018}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 2
\pages 175--182
\crossref{https://doi.org/10.1090/S1061-0022-2011-01137-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288688900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871369245}
Linking options:
https://www.mathnet.ru/eng/aa1176
https://www.mathnet.ru/eng/aa/v22/i2/p1
This publication is cited in the following 6 articles:
Marko Kostic, “Abstract degenerate Volterra inclusions in locally convex spaces”, ejde, 2023:01-?? (2023), 63
M. S. Bichegkuev, “Almost periodic at infinity solutions to integro-differential equations with non-invertible operator at derivative”, Ufa Math. J., 12:1 (2020), 3–12
A. V. Pechkurov, “An Example in the Theory of Bisectorial Operators”, Math. Notes, 97:2 (2015), 243–248
M. S. Bichegkuev, “Spectral analysis of difference and differential operators in weighted spaces”, Sb. Math., 204:11 (2013), 1549–1564
A. G. Chshiev, “O polugruppe operatorov Silchenko”, Vladikavk. matem. zhurn., 15:4 (2013), 82–90
A. V. Pechkurov, “Bisectorial operator pencils and the problem of bounded solutions”, Russian Math. (Iz. VUZ), 56:3 (2012), 26–35