Персоналии
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
 
Исмаилов Вугар Эльман оглы

Публикаций: 50 (50)
в MathSciNet: 46 (46)
в zbMATH: 35 (35)
в Web of Science: 26 (26)
в Scopus: 24 (24)
Цитированных статей: 29
Цитирований: 454

Статистика просмотров:
Эта страница:1093
Страницы публикаций:1061
Полные тексты:270
Списки литературы:165
Исмаилов Вугар Эльман оглы
профессор
доктор физико-математических наук (2014)
Специальность ВАК: 01.01.01 (вещественный, комплексный и функциональный анализ)
E-mail:
Сайт: https://sites.google.com/site/vugaris
Ключевые слова: суперпозиции функций, ридж функции, нейронные сети, аппроксимация, проксиминальность, экстремальный элемент, двойственное соотношение.
Коды УДК: 517.5

Основные темы научной работы

теория приближений, теория функций, функциональный анализ

   
Основные публикации:
  1. V. E. Ismailov, “A three layer neural network can represent any multivariate function”, J. Math. Anal. Appl., 523:1 (2023), Paper No. 127096  crossref
  2. V. E. Ismailov, Ridge functions and applications in neural networks, Mathematical Surveys and Monographs, 263, American Mathematical Society, Providence, 2021 , 186 pp. https://bookstore.ams.org/surv-263  crossref
  3. R. A. Aliev, V. E. Ismailov, “A representation problem for smooth sums of ridge functions”, J. Approx. Theory, 257 (2020), 105448, 13 pp.  crossref  mathscinet
  4. A. Kh. Asgarova, V. E. Ismailov, “On the representation by sums of algebras of continuous functions”, C. R. Math. Acad. Sci. Paris, 355:9 (2017), 949–955  crossref  mathscinet  zmath  isi  scopus
  5. A. Kh. Asgarova, V. E. Ismailov, “Diliberto-Straus algorithm for the uniform approximation by a sum of two algebras.”, Proc. Indian Acad. Sci. Math. Sci., 127:2 (2017), 361–374  crossref  mathscinet  zmath  isi  elib  scopus
  6. В. Э. Исмаилов, “Аппроксимация суммами ридж функций с фиксированными направлениями”, Алгебра и анализ, 28:6 (2016), 20–69  mathnet  isi; V. E. Ismailov, “Approximation by sums of ridge functions with fixed directions”, St. Petersburg Math. J., 28:6 (2017), 741–772  crossref  mathscinet  zmath  isi  elib  scopus
  7. N. J. Guliyev, V. E. Ismailov, “A single hidden layer feedforward network with only one neuron in the hidden layer can approximate any univariate function”, Neural Comput., 28:7 (2016), 1289–-1304  crossref  mathscinet  zmath  isi  elib  scopus
  8. V. E. Ismailov, “On the approximation by neural networks with bounded number of neurons in hidden layers”, J. Math. Anal. Appl., 417:2 (2014), 963–969  crossref  mathscinet  zmath  isi  elib  scopus
  9. V. E. Ismailov, A. Pinkus, “Interpolation on lines by ridge functions”, J. Approx. Theory, 175 (2013), 91–113  crossref  mathscinet  zmath  isi  elib  scopus
  10. V. E. Ismailov, “Approximation by neural networks with weights varying on a finite set of directions”, J. Math. Anal. Appl., 389:1 (2012), 72–83  crossref  mathscinet  zmath  isi  elib  scopus
  11. V. E. Ismailov, “On the theorem of M Golomb”, Proc. Indian Acad. Sci. Math. Sci., 119:1 (2009), 45–52  crossref  mathscinet  zmath  isi  elib  scopus
  12. V. E. Ismailov, “On the representation by linear superpositions”, J. Approx. Theory, 151:2 (2008), 113–125  crossref  mathscinet  zmath  isi  elib  scopus

https://www.mathnet.ru/rus/person29480
Список публикаций на Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/630025

Список публикаций:
| научные публикации | по годам | по типам | по числу цит. | общий список |


Цитирования (Crossref Cited-By Service + Math-Net.Ru)

   2023
1. V. E. Ismailov, “A three layer neural network can represent any multivariate function”, J. Math. Anal. Appl., 523:1 (2023), Paper No. 127096  crossref 9

   2022
2. R. A. Aliev, A. A. Asgarova, V. E. Ismailov, “The double difference property for the class of locally Hölder continuous functions”, Mosc. Math. J., 22:3 (2022), 393–400  mathnet  crossref  mathscinet

   2021
3. А. Х. Аскарова, В. Э. Исмаилов, “Теорема типа Чебышева для характеризации наилучшего приближения непрерывной функции суммой двух алгебр”, Матем. заметки, 109:1 (2021), 19–26  mathnet  crossref  isi; A. Kh. Askarova, V. È. Ismailov, “A Chebyshev-Type Theorem Characterizing Best Approximation of a Continuous Function by Elements of the Sum of Two Algebras”, Math. Notes, 109:1 (2021), 15–20  crossref  mathscinet  isi 1
4. V. E. Ismailov, Ridge functions and applications in neural networks, Mathematical Surveys and Monographs, 263, American Mathematical Society, Providence, 2021 , 186 pp. https://bookstore.ams.org/surv-263  crossref 7
5. R. A. Aliev, A. A. Asgarova, V. E. Ismailov, “On the representation by bivariate ridge functions”, Ukrainian Math. J., 73:5 (2021), 675–685  crossref  mathscinet 1

   2020
6. R. A. Aliev, V. E. Ismailov, “A representation problem for smooth sums of ridge functions”, J. Approx. Theory, 257 (2020), 105448, 13 pp.  crossref  mathscinet 1

   2019
7. R. A. Aliev, A. A. Asgarova, V. E. Ismailov, “A note on continuous sums of ridge functions”, J. Approx. Theory, 237 (2019), 210–221  crossref  mathscinet  zmath  isi  scopus 4
8. V. E. Ismailov, “Computing the approximation error for neural networks with weights varying on fixed directions”, Numer. Funct. Anal. Optim., 40:12 (2019), 1395–1409  crossref  mathscinet 2
9. R. A. Aliev, A. A. Asgarova, V. E. Ismailov, “On the Hölder continuity in ridge function representation”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 45:1 (2019), 31–40  mathscinet

   2018
10. V. E. Ismailov, “A note on the criterion for a best approximation by superpositions of functions”, Studia Math., 240:2 (2018), 193–199  crossref  mathscinet  zmath  isi  scopus
11. N. J. Guliyev, V. E. Ismailov, “On the approximation by single hidden layer feedforward neural networks with fixed weights”, Neural Networks, 98 (2018), 296–304  crossref  isi  scopus 88
12. N. J. Guliyev, V. E. Ismailov, “Approximation capability of two hidden layer feedforward neural networks with fixed weights”, Neurocomputing, 316 (2018), 262–269  crossref  isi  scopus 46

   2017
13. A. Kh. Asgarova, V. E. Ismailov, “On the representation by sums of algebras of continuous functions”, C. R. Math. Acad. Sci. Paris, 355:9 (2017), 949–955  crossref  mathscinet  zmath  isi  scopus 2
14. V. E. Ismailov, “A note on the equioscillation theorem for best ridge function approximation”, Expo. Math., 35:3 (2017), 343–349  crossref  mathscinet  zmath  isi  elib  scopus 5
15. V. E. Ismailov, E. Savas, “Measure theoretic results for approximation by neural networks with limited weights”, Numer. Funct. Anal. Optim., 38:7 (2017), 819–830  crossref  mathscinet  zmath  isi  elib  scopus 5
16. A. Kh. Asgarova, V. E. Ismailov, “Diliberto-Straus algorithm for the uniform approximation by a sum of two algebras.”, Proc. Indian Acad. Sci. Math. Sci., 127:2 (2017), 361–374  crossref  mathscinet  zmath  isi  elib  scopus 2
17. V. E. Ismailov, “On the uniqueness of representation by linear superpositions”, Ukrainian Math. J., 68:12 (2017), 1874–1883  crossref  mathscinet  zmath  isi  elib  scopus 2

   2016
18. В. Э. Исмаилов, “Аппроксимация суммами ридж функций с фиксированными направлениями”, Алгебра и анализ, 28:6 (2016), 20–69  mathnet  isi; V. E. Ismailov, “Approximation by sums of ridge functions with fixed directions”, St. Petersburg Math. J., 28:6 (2017), 741–772  crossref  mathscinet  zmath  isi  elib  scopus 11
19. N. J. Guliyev, V. E. Ismailov, “A single hidden layer feedforward network with only one neuron in the hidden layer can approximate any univariate function”, Neural Comput., 28:7 (2016), 1289–-1304  crossref  mathscinet  zmath  isi  elib  scopus 60
20. R. A. Aliev, V. E. Ismailov, “On a smoothness problem in ridge function representation”, Adv. in Appl. Math., 73 (2016), 154–169  crossref  mathscinet  zmath  isi  scopus 12

   2015
21. R. A. Aliev, V. E. Ismailov, T. M. Shahbalayeva, “On the representation by sums of ridge functions”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 41:2 (2015), 106–118  mathnet  mathscinet  zmath  isi
22. V. E. Ismailov, “Alternating algorithm for the approximation by sums of two compositions and ridge functions”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 41:1 (2015), 146–152  mathnet  mathscinet  zmath  isi
23. V. E. Ismailov, “Approximation by ridge functions and neural networks with a bounded number of neurons”, Appl. Anal., 94:11 (2015), 2245–2260  crossref  mathscinet  zmath  isi  elib  scopus 12

   2014
24. V. E. Ismailov, “On the approximation by neural networks with bounded number of neurons in hidden layers”, J. Math. Anal. Appl., 417:2 (2014), 963–969  crossref  mathscinet  zmath  isi  elib  scopus 80

   2013
25. V. E. Ismailov, A. Pinkus, “Interpolation on lines by ridge functions”, J. Approx. Theory, 175 (2013), 91–113  crossref  mathscinet  zmath  isi  elib  scopus 12
26. V. E. Ismailov, “A review of some results on ridge function approximation”, Azerb. J. Math., 3:1 (2013), 3–51  mathscinet  zmath  elib

   2012
27. V. E. Ismailov, “Approximation by neural networks with a restricted set of weights”, Int. J. Math. Game Theory Algebra, 21:6 (2012), 451–464  mathscinet
28. V. E. Ismailov, “A note on the representation of continuous functions by linear superpositions”, Expo. Math., 30:1 (2012), 96–101  crossref  mathscinet  zmath  isi  elib  scopus 6
29. V. E. Ismailov, “Approximation by neural networks with weights varying on a finite set of directions”, J. Math. Anal. Appl., 389:1 (2012), 72–83  crossref  mathscinet  zmath  isi  elib  scopus 24

   2011
30. V. E. Ismailov, “Approximation capabilities of neural networks with weights from two directions”, Azerb. J. Math., 1:1 (2011), 122–128  mathscinet  zmath  elib

   2009
31. V. E. Ismailov, “On the proximinality of ridge functions”, Sarajevo J. Math., 5(17):1 (2009), 109–118  mathscinet  zmath
32. V. E. Ismailov, “On the theorem of M Golomb”, Proc. Indian Acad. Sci. Math. Sci., 119:1 (2009), 45–52  crossref  mathscinet  zmath  isi  elib  scopus 4

   2008
33. V. E. Ismailov, “On the approximation by weighted ridge functions”, An. Univ. Vest Timis. Ser. Mat.-Inform., 46:1 (2008), 75–83  mathscinet  zmath
34. V. E. Ismailov, “On the representation by linear superpositions”, J. Approx. Theory, 151:2 (2008), 113–125  crossref  mathscinet  zmath  isi  elib  scopus 14

   2007
35. V. E. Ismailov, “On the approximation by compositions of fixed multivariate functions with univariate functions”, Studia Math., 183:2 (2007), 117–126  crossref  mathscinet  zmath  isi  elib  scopus 4
36. V. E. Ismailov, “Characterization of an extremal sum of ridge functions”, J. Comput. Appl. Math., 205:1 (2007), 105–115  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus 16
37. V. E. Ismailov, “Representation of multivariate functions by sums of ridge functions”, J. Math. Anal. Appl., 331:1 (2007), 184–190  crossref  mathscinet  zmath  isi  elib  scopus 5
38. V. E. Ismailov, “A note on the best L_2 approximation by ridge functions”, Appl. Math. E-Notes, 7 (2007), 71–76  mathscinet  zmath  elib

   2006
39. В. Э. Исмаилов, “О методах вычисления точного значения наилучшего приближения суммами функций одной переменной”, Сиб. матем. журн., 47:5 (2006), 1076–1082  mathnet  mathscinet  zmath  isi  elib; V. È. Ismailov, “Methods for computing the least deviation from the sums of functions of one variable”, Siberian Math. J., 47:5 (2006), 883–888  crossref  mathscinet  zmath  isi  elib  scopus 13
40. V. E. Ismailov, “On error formulas for approximation by sums of univariate functions”, Int. J. Math. Math. Sci., 2006 (2006), 11 pp. , Art. ID 65620  crossref  mathscinet  scopus 6

   2005
41. V. E. Ismailov, “On two-sided exact estimates for the best approximation by sums ϕ(x)+ψ(y)”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 25:1 (2005), 89–94  mathscinet
42. V. E. Ismailov, “On a theorem of approximation by the sums g1(x1)+g2(x2)+⋯+gn(xn)”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 25:4 (2005), 49–54  mathscinet  zmath

   2004
43. V. E. Ismailov, “On some classes of bivariate functions characterized by formulas for the best approximation”, Rad. Mat., 13:1 (2004), 53–62  mathscinet  zmath

   2003
44. V. E. Ismailov, “On discontinuity of the best approximation of a continuous function.”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 23:4 (2003), 57–60  mathscinet  zmath
45. V. E. Ismailov, “On behaviour of the best approximation as a function of an approximation set”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 19 (2003), 113–116  mathscinet  zmath

   2002
46. V. E. Ismailov, “Theorem on lightning bolts for elementary domains”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 17 (2002), 78–85  mathscinet  zmath

   1999
47. V. E. Ismailov, “On some geometrical conditions for the existence of the best approximating function of the form ϕ(x)+ψ(y)”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 19:1-2 (1999), 91–95  mathscinet  zmath

   1997
48. V. E. Ismailov, “On a characteristic property of a family of classes of best approximation”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 6 (1997), 74–82  mathscinet
49. M-B. A. Babaev, V. E. Ismailov, “Two-sided estimates for the best approximation in domains different from the parallelepiped”, Funct. Approx. Comment. Math., 25 (1997), 121–128  mathscinet  zmath

   1996
50. V. E. Ismailov, “Two-sided estimates for best approximation in domains consisting of a union of rectangles”, Izv. Akad. Nauk Azerb. Ser. Fiz.-Tekh. Mat. Nauk, 17:1-3 (1996), 109–114  mathscinet

Организации
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024