Loading [MathJax]/jax/output/CommonHTML/jax.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2007, Volume 47, Number 10, Pages 1706–1726 (Mi zvmmf232)  

This article is cited in 8 scientific papers (total in 8 papers)

Necessary conditions for ε-uniform convergence of finite difference schemes for parabolic equations with moving boundary layers

G. I. Shishkin

Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620219, Russia
References:
Abstract: A grid approximation of the boundary value problem for a singularly perturbed parabolic reaction-diffusion equation is considered in a domain with the boundaries moving along the axis x in the positive direction. For small values of the parameter ε (this is the coefficient of the higher order derivatives of the equation, ε(0,1]), a moving boundary layer appears in a neighborhood of the left lateral boundary SL1. In the case of stationary boundary layers, the classical finite difference schemes on piece-wise uniform grids condensing in the layers converge ε-uniformly at a rate of O(N1lnN+N0), where N and N0 define the number of mesh points in x and t. For the problem examined in this paper, the classical finite difference schemes based on uniform grids converge only under the condition N1+N10ε. It turns out that, in the class of difference schemes on rectangular grids that are condensed in a neighborhood of SL1 with respect to x and t, the convergence under the condition N1+N10ε1/2 cannot be achieved. Examination of widths that are similar to Kolmogorov's widths makes it possible to establish necessary and sufficient conditions for the ε-uniform convergence of approximations of the solution to the boundary value problem. These conditions are used to design a scheme that converges ε-uniformly at a rate of O(N1lnN+N0).
Key words: boundary value problem for parabolic equations, perturbation parameter ε, parabolic reaction-diffusion equation, finite difference approximation, moving boundary layer, Kolmogorov's width, ε-uniform convergence.
Received: 20.04.2007
English version:
Computational Mathematics and Mathematical Physics, 2007, Volume 47, Issue 10, Pages 1636–1655
DOI: https://doi.org/10.1134/S0965542507100065
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: G. I. Shishkin, “Necessary conditions for ε-uniform convergence of finite difference schemes for parabolic equations with moving boundary layers”, Zh. Vychisl. Mat. Mat. Fiz., 47:10 (2007), 1706–1726; Comput. Math. Math. Phys., 47:10 (2007), 1636–1655
Citation in format AMSBIB
\Bibitem{Shi07}
\by G.~I.~Shishkin
\paper Necessary conditions for $\varepsilon$-uniform convergence of finite difference schemes for parabolic equations with moving boundary layers
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2007
\vol 47
\issue 10
\pages 1706--1726
\mathnet{http://mi.mathnet.ru/zvmmf232}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2388622}
\transl
\jour Comput. Math. Math. Phys.
\yr 2007
\vol 47
\issue 10
\pages 1636--1655
\crossref{https://doi.org/10.1134/S0965542507100065}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35648974883}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf232
  • https://www.mathnet.ru/eng/zvmmf/v47/i10/p1706
  • This publication is cited in the following 8 articles:
    1. D. V. Lukyanenko, R. L. Argun, A. A. Borzunov, A. V. Gorbachev, V. D. Shinkarev, M. A. Shishlenin, A. G. Yagola, “On the Features of Numerical Solution of Coefficient Inverse Problems for Nonlinear Equations of the Reaction–Diffusion–Advection Type with Data of Various Types”, Diff Equat, 59:12 (2023), 1734  crossref
    2. R.L. Argun, V.T. Volkov, D.V. Lukyanenko, “Numerical simulation of front dynamics in a nonlinear singularly perturbed reaction–diffusion problem”, Journal of Computational and Applied Mathematics, 412 (2022), 114294  crossref
    3. Lukyanenko V D. Prigorniy V I. Shishlenin M.A., “Some Features of Solving An Inverse Backward Problem For a Generalized Burgers' Equation”, J. Inverse Ill-Posed Probl., 28:5 (2020), 641–649  crossref  isi
    4. V.T. Volkov, D. V. Lukyanenko, N. N. Nefedov, “Analytical-numerical approach to describing time-periodic motion of fronts in singularly perturbed reaction–advection–diffusion models”, Comput. Math. Math. Phys., 59:1 (2019), 46–58  mathnet  crossref  crossref  isi  elib
    5. D. V. Luk'yanenko, V. T. Volkov, N. N. Nefedov, “Dynamically adapted mesh construction for the efficient numerical solution of a singular perturbed reaction-diffusion-advection equation”, Model. i analiz inform. sistem, 24:3 (2017), 322–338  mathnet  crossref  elib
    6. D. V. Lukyanenko, V. T. Volkov, N. N. Nefedov, L. Recke, K. Schneider, “Analytic-numerical approach to solving singularly perturbed parabolic equations with the use of dynamic adapted meshes”, Model. i analiz inform. sistem, 23:3 (2016), 334–341  mathnet  crossref  mathscinet  elib
    7. Kadalbajoo M.K., Gupta V., “A brief survey on numerical methods for solving singularly perturbed problems”, Applied Mathematics and Computation, 217:8 (2010), 3641–3716  crossref  mathscinet  zmath  isi  scopus
    8. Shishkin G.I., “Grid approximation of singularly perturbed parabolic equations with moving boundary layers”, Math. Model. Anal., 13:3 (2008), 421–442  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:429
    Full-text PDF :146
    References:97
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025