Almost-periodic functions and solutions of differential equations, quality properties of equations in Banach spaces, spectral theory of differential operators, stabilization of solutions of parabolic equations. Homogenization of differential operators and variational functionals. Lavrentiev phenomenon. Variational problem for lagrangians with non-standard grows conditions. The concept of two-scale convergence associated with a fixed periodic Borel measure is introduced. In the case when our measure is Lebegue measure on the torus convergence in the sense of Nguetseng-Allaire is obtained. An application of two-scale convergence to the homogenization of some problems in the theory of porous media (the double-porosity model) is presented. A mathamatical notion of "softly or weakly coupled parallel flows" is worked out. A homogenized operator is constructed, and the convergence result itself is interpreted as a "strong two-scale resolvent convergence". Problems concerning the behaviour of the spectrum under homogenization are touched upon in this connection. We presented a Homogenization Theory on periodic networks, junctions and, more generally, Multi-dimensional Structures. We has shown that the Homogenized Problem has a non-classical character in most cases. This important fact is a distinctive feature of Elasticity Problems, in contrast to scalar Problems. A weighted Sobolev space is constructed in which smooth functions are not dense, and their closure is of codimension one. With the help of this weighted space, counterexamples to natural hypotheses on the passage to the limit in non-uniformly-elliptic equations and on the structure of the limit equation are constructed. We introduced a new class of weight functions (partially Muckenhoupt weights"). For the corresponding elliptic equation we proved the Holder continuity. At the same time the Harnack inequality, weight Sobolev inequality and double-condition fail. In particulary, the old problem by Fabes, Birolli, Serapioni is solved.
Biography
Graduated from Faculty of Mathematics and Mechanics of M. V. Lomonosov Moscow State University (MSU) in 1963 (department of theory of functions and functional analysis). Ph. D. thesis was defended in 1970. D. Sci. thesis was defended in 1975. Since 1978 I have led the reseach seminar at VGPU on Partial differential equations. Since 2000 I have led the reseach seminar at MSU on Homogenization.
Main publications:
Levitan B. M., Zhikov V. V., Pochti-periodicheskie funktsii i differentsialnye uravneniya, Izd. MGU, M., 1978
Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993
Jikov V. V., Kozlov S. M., Oleinik O. A., Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994
Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Matem. sb., 187:8 (1996), 3–40
Zhikov V. V., “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izvestiya RAN, ser. matem., 66:2 (2002), 81–148
V. V. Zhikov, S. E. Pastukhova, “Homogenization and two-scale convergence in Sobolev space with oscillating exponent”, Algebra i Analiz, 30:2 (2018), 114–144; St. Petersburg Math. J., 30:2 (2019), 231–251
V. V. Zhikov, S. E. Pastukhova, “Large time asymptotics of fundamental solution for the diffusion equation in periodic medium and its application to estimates in the theory of averaging”, CMFD, 63:2 (2017), 223–246
2016
3.
V. V. Zhikov, S. E. Pastukhova, “On the convergence of bloch eigenfunctions in homogenization problems”, Funktsional. Anal. i Prilozhen., 50:3 (2016), 47–65; Funct. Anal. Appl., 50:3 (2016), 204–218
V. V. Zhikov, S. E. Pastukhova, “Operator estimates in homogenization theory”, Uspekhi Mat. Nauk, 71:3(429) (2016), 27–122; Russian Math. Surveys, 71:3 (2016), 417–511
V. V. Zhikov, M. D. Surnachev, “О плотности гладких функций в весовых соболевских пространствах с переменным показателем”, Algebra i Analiz, 27:3 (2015), 95–124; St. Petersburg Math. J., 27:3 (2016), 415–436
V. V. Zhikov, S. E. Pastukhova, “On integral representation of $\Gamma$-limit functionals”, Fundam. Prikl. Mat., 19:4 (2014), 101–120; J. Math. Sci., 217:6 (2016), 736–750
7.
V. V. Zhikov, S. E. Pastukhova, “Uniform convexity and variational convergence”, Tr. Mosk. Mat. Obs., 75:2 (2014), 245–276; Trans. Moscow Math. Soc., 75 (2014), 205–231
V. V. Zhikov, S. E. Pastukhova, “The $\Gamma$-convergence of oscillating integrands with nonstandard coercivity and growth conditions”, Mat. Sb., 205:4 (2014), 33–68; Sb. Math., 205:4 (2014), 488–521
Yu. A. Alkhutov, V. V. Zhikov, “Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent”, Mat. Sb., 205:3 (2014), 3–14; Sb. Math., 205:3 (2014), 307–318
V. V. Zhikov, G. A. Yosifian, “Introduction to the theory of two-scale convergence”, Tr. Semim. im. I. G. Petrovskogo, 29 (2013), 281–332; J. Math. Sci. (N. Y.), 197:3 (2014), 325–357
V. V. Zhikov, S. E. Pastukhova, “On the Navier–Stokes equations: Existence theorems and energy equalities”, Trudy Mat. Inst. Steklova, 278 (2012), 75–95; Proc. Steklov Inst. Math., 278 (2012), 67–87
V. V. Zhikov, “Estimates of the Nash–Aronson type for degenerating parabolic equations”, CMFD, 39 (2011), 66–78; Journal of Mathematical Sciences, 190:1 (2013), 66–79
V. V. Zhikov, S. E. Pastukhova, “Homogenization of Monotone Operators Under Conditions of Coercitivity and Growth of Variable Order”, Mat. Zametki, 90:1 (2011), 53–69; Math. Notes, 90:1 (2011), 48–63
Yu. A. Alkhutov, V. V. Zhikov, “Hölder continuity of solutions of parabolic equations with variable nonlinearity exponent”, Tr. Semim. im. I. G. Petrovskogo, 28 (2011), 8–74; J. Math. Sci. (N. Y.), 179:3 (2011), 347–389
V. V. Zhikov, S. E. Pastukhova, “On the Property of Higher Integrability for Parabolic Systems of Variable Order of Nonlinearity”, Mat. Zametki, 87:2 (2010), 179–200; Math. Notes, 87:2 (2010), 169–188
V. V. Zhikov, S. E. Pastukhova, “Lemmas on compensated compactness in elliptic and parabolic equations”, Trudy Mat. Inst. Steklova, 270 (2010), 110–137; Proc. Steklov Inst. Math., 270 (2010), 104–131
Yu. A. Alkhutov, V. V. Zhikov, “Existence theorems for solutions of parabolic equations with variable order of nonlinearity”, Trudy Mat. Inst. Steklova, 270 (2010), 21–32; Proc. Steklov Inst. Math., 270 (2010), 15–26
V. V. Zhikov, “New Approach to the Solvability of Generalized Navier–Stokes Equations”, Funktsional. Anal. i Prilozhen., 43:3 (2009), 33–53; Funct. Anal. Appl., 43:3 (2009), 190–207
V. V. Zhikov, “On the Technique for Passing to the Limit in Nonlinear Elliptic Equations”, Funktsional. Anal. i Prilozhen., 43:2 (2009), 19–38; Funct. Anal. Appl., 43:2 (2009), 96–112
V. V. Zhikov, S. E. Pastukhova, “Improved integrability of the gradients of solutions of elliptic equations with variable nonlinearity exponent”, Mat. Sb., 199:12 (2008), 19–52; Sb. Math., 199:12 (2008), 1751–1782
V. V. Zhikov, S. E. Pastukhova, “Homogenization of degenerate elliptic equations”, Sibirsk. Mat. Zh., 49:1 (2008), 101–124; Siberian Math. J., 49:1 (2008), 80–101
V. V. Zhikov, “Solvability of the Three-Dimensional Thermistor Problem”, Trudy Mat. Inst. Steklova, 261 (2008), 101–114; Proc. Steklov Inst. Math., 261 (2008), 98–111
V. V. Zhikov, S. E. Pastukhova, “On the Trotter–Kato Theorem in a Variable Space”, Funktsional. Anal. i Prilozhen., 41:4 (2007), 22–29; Funct. Anal. Appl., 41:4 (2007), 264–270
V. V. Zhikov, “Diffusion in an incompressible random flow. Estimates of
Nash-Aronson type for transition probabilities, and the central limit
theorem”, Dokl. Akad. Nauk, 407:4 (2006), 439–442
26.
V. V. Zhikov, A. L. Piatnitski, “Homogenization of random singular structures and random measures”, Izv. RAN. Ser. Mat., 70:1 (2006), 23–74; Izv. Math., 70:1 (2006), 19–67
V. V. Zhikov, “Estimates of the Nash–Aronson type for the diffusion equation with non-symmetric matrix and
their application to homogenization”, Mat. Sb., 197:12 (2006), 65–94; Sb. Math., 197:12 (2006), 1775–1804
V. V. Zhikov, S. E. Pastukhova, “Derivation of the limit equations of elasticity theory on thin nets”, Tr. Semim. im. I. G. Petrovskogo, 25 (2006), 55–97; J. Math. Sci. (N. Y.), 135:1 (2006), 2637–2665
V. V. Zhikov, S. E. Pastukhova, “Homogenized Tensor on Networks”, Trudy Mat. Inst. Steklova, 250 (2005), 105–111; Proc. Steklov Inst. Math., 250 (2005), 95–101
V. V. Zhikov, “On gaps in the spectrum of some divergence elliptic operators with periodic coefficients”, Algebra i Analiz, 16:5 (2004), 34–58; St. Petersburg Math. J., 16:5 (2005), 773–790
V. V. Zhikov, “Remarks on the Uniqueness of a Solution of the Dirichlet Problem for Second-Order Elliptic Equations with Lower-Order Terms”, Funktsional. Anal. i Prilozhen., 38:3 (2004), 15–28; Funct. Anal. Appl., 38:3 (2004), 173–183
V. V. Zhikov, “On density of smooth functions in Sobolev–Orlich spaces”, Zap. Nauchn. Sem. POMI, 310 (2004), 67–81; J. Math. Sci. (N. Y.), 132:3 (2006), 285–294
V. V. Zhikov, S. E. Pastukhova, “Homogenization for elasticity problems on periodic networks
of critical thickness”, Mat. Sb., 194:5 (2003), 61–96; Sb. Math., 194:5 (2003), 697–732
V. V. Zhikov, “To the Problem of Passage to the Limit in Divergent Nonuniformly Elliptic Equations”, Funktsional. Anal. i Prilozhen., 35:1 (2001), 23–39; Funct. Anal. Appl., 35:1 (2001), 19–33
V. V. Zhikov, “On an extension of the method of two-scale convergence and its applications”, Mat. Sb., 191:7 (2000), 31–72; Sb. Math., 191:7 (2000), 973–1014
V. V. Zhikov, “On the Homogenization Technique for Variational Problems”, Funktsional. Anal. i Prilozhen., 33:1 (1999), 14–29; Funct. Anal. Appl., 33:1 (1999), 11–24
Yu. A. Alkhutov, V. V. Zhikov, “The leading term of the spectral asymptotics for the Kohn–Laplace operator in a bounded domain”, Mat. Zametki, 64:4 (1998), 493–505; Math. Notes, 64:4 (1998), 429–439
V. V. Zhikov, “Diffusion in an Incompressible Random Flow”, Funktsional. Anal. i Prilozhen., 31:3 (1997), 10–22; Funct. Anal. Appl., 31:3 (1997), 156–166
V. V. Zhikov, M. E. Rychago, “Homogenization of non-linear second-order elliptic equations in perforated domains”, Izv. RAN. Ser. Mat., 61:1 (1997), 69–88; Izv. Math., 61:1 (1997), 69–88
V. V. Zhikov, “On the averaging of the system of Stokes equations in a punctured
domain”, Dokl. Akad. Nauk, 334:2 (1994), 144–147; Dokl. Math., 49:1 (1994), 52–57
V. V. Zhikov, “Asymptotic problems related to a second-order parabolic equation in nondivergence form with randomly homogeneous coefficients”, Differ. Uravn., 29:5 (1993), 859–869; Differ. Equ., 29:5 (1993), 735–744
O. O. Barabanov, V. V. Zhikov, “The limit load and homogenization”, Izv. RAN. Ser. Mat., 57:5 (1993), 15–43; Russian Acad. Sci. Izv. Math., 43:2 (1994), 205–231
V. V. Zhikov, “Threshold of conductivity for a random cubic structure”, Mat. Zametki, 52:6 (1992), 15–24; Math. Notes, 52:6 (1992), 1181–1187
52.
V. V. Zhikov, “On passage to the limit in nonlinear variational problems”, Mat. Sb., 183:8 (1992), 47–84; Russian Acad. Sci. Sb. Math., 76:2 (1993), 427–459
V. V. Zhikov, “The Lavrent'ev effect and averaging of nonlinear variational problems”, Differ. Uravn., 27:1 (1991), 42–50; Differ. Equ., 27:1 (1991), 32–39
V. V. Zhikov, “Estimates for the averaged matrix and the averaged tensor”, Uspekhi Mat. Nauk, 46:3(279) (1991), 49–109; Russian Math. Surveys, 46:3 (1991), 65–136
V. V. Zhikov, “Problems of the continuation of functions in connection with averaging theory”, Differ. Uravn., 26:1 (1990), 39–50; Differ. Equ., 26:1 (1990), 34–44
V. V. Zhikov, “Asymptotic problems connected with the heat equation in perforated domains”, Mat. Sb., 181:10 (1990), 1283–1305; Math. USSR-Sb., 71:1 (1992), 125–147
V. V. Zhikov, “Remarks on the problem of residual diffusion”, Uspekhi Mat. Nauk, 44:6(270) (1989), 155–156; Russian Math. Surveys, 44:6 (1989), 194–195
V. V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory”, Izv. Akad. Nauk SSSR Ser. Mat., 50:4 (1986), 675–710; Math. USSR-Izv., 29:1 (1987), 33–66
V. N. Denisov, V. V. Zhikov, “Stabilization of the solution of the Cauchy problem for parabolic equations”, Mat. Zametki, 37:6 (1985), 834–850; Math. Notes, 37:6 (1985), 456–466
V. V. Zhikov, “Questions of convergence, duality, and averaging for functionals of the calculus of variations”, Izv. Akad. Nauk SSSR Ser. Mat., 47:5 (1983), 961–998; Math. USSR-Izv., 23:2 (1984), 243–276
V. V. Zhikov, “Asymptotic behavior and stabilization of solutions of a second-order parabolic equation with lowest terms”, Tr. Mosk. Mat. Obs., 46 (1983), 69–98
V. V. Zhikov, E. V. Krivenko, “Averaging of singularly perturbed elliptic operators”, Mat. Zametki, 33:4 (1983), 571–582; Math. Notes, 33:4 (1983), 294–300
V. V. Zhikov, “Questions of convergence, duality, and averaging for a certain class of functionals in variational calculus”, Dokl. Akad. Nauk SSSR, 267:3 (1982), 524–528
V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, “Averaging of parabolic operators with almost periodic coefficients”, Mat. Sb. (N.S.), 117(159):1 (1982), 69–85; Math. USSR-Sb., 45:1 (1983), 73–90
V. V. Zhikov, O. A. Oleinik, “Averaging of a system of elasticity theory with almost periodic coefficients”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 6, 62–70
V. V. Zhikov, M. M. Sirazhudinov, “On $G$-compactness of a class of nondivergence elliptic operators of second order”, Izv. Akad. Nauk SSSR Ser. Mat., 45:4 (1981), 718–733; Math. USSR-Izv., 19:1 (1982), 27–40
V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, “$G$-convergence of parabolic operators”, Uspekhi Mat. Nauk, 36:1(217) (1981), 11–58; Russian Math. Surveys, 36:1 (1981), 9–60
V. V. Zhikov, M. M. Sirazhudinov, “The averaging of nondivergence second order elliptic and parabolic operators and the stabilization of solutions of the Cauchy problem”, Mat. Sb. (N.S.), 116(158):2(10) (1981), 166–186; Math. USSR-Sb., 44:2 (1983), 149–166
V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Hà Tiên Ngoan, “Averaging and $G$-convergence of differential operators”, Uspekhi Mat. Nauk, 34:5(209) (1979), 65–133; Russian Math. Surveys, 34:5 (1979), 69–147
V. V. Zhikov, “A point stabilization criterion for second order parabolic equations with almost periodic coefficients”, Mat. Sb. (N.S.), 110(152):2(10) (1979), 304–318; Math. USSR-Sb., 38:2 (1981), 279–292
V. V. Zhikov, “Proof of the Favard theorem on the existence of almost-periodic solution for an arbitrary Banach space”, Mat. Zametki, 23:1 (1978), 121–126; Math. Notes, 23:1 (1978), 66–69
V. V. Zhikov, “On the stabilization of solutions of parabolic equations”, Mat. Sb. (N.S.), 104(146):4(12) (1977), 597–616; Math. USSR-Sb., 33:4 (1977), 519–537
V. V. Zhikov, “Some admissibility and dichotomy questions. The averaging principle”, Izv. Akad. Nauk SSSR Ser. Mat., 40:6 (1976), 1380–1408; Math. USSR-Izv., 10:6 (1976), 1307–1332
V. V. Zhikov, V. M. Tyurin, “The invertibility of the operator $d/dt+A(t)$ in the space of bounded functions”, Mat. Zametki, 19:1 (1976), 99–104; Math. Notes, 19:1 (1976), 58–61
V. V. Zhikov, “Solvability of linear equations in the Besicovitch and Bohr classes of almost periodic functions”, Mat. Zametki, 18:4 (1975), 553–560; Math. Notes, 18:4 (1975), 918–922
V. V. Zhikov, “Monotonicity in the theory of almost periodic solutions of nonlinear operator equations”, Mat. Sb. (N.S.), 90(132):2 (1973), 214–228; Math. USSR-Sb., 19:2 (1973), 209–223
V. V. Zhikov, “Certain functional methods in the theory of almost periodic solutions. I”, Differ. Uravn., 7:2 (1971), 215–225
91.
V. V. Zhikov, “Remarks on compactness conditions related to the work of M. I. Kadets on integration of abstract almost-periodic functions”, Funktsional. Anal. i Prilozhen., 5:1 (1971), 30–36; Funct. Anal. Appl., 5:1 (1971), 26–30
V. V. Zhikov, “The existence of Levitan almost-periodic solutions of linear systems (second complement to Favard's classical theory)”, Mat. Zametki, 9:4 (1971), 409–414; Math. Notes, 9 (1971), 235–238
V. V. Zhikov, “On inverse Sturm–Liouville problems on a finite segment”, Izv. Akad. Nauk SSSR Ser. Mat., 31:5 (1967), 965–976; Math. USSR-Izv., 1:5 (1967), 923–934
M. G. Gasymov, V. V. Zhikov, B. M. Levitan, “Conditions for discreteness and finiteness of the negative spectrum of Schrödinger's operator equation”, Mat. Zametki, 2:5 (1967), 531–538; Math. Notes, 2:5 (1967), 813–817
V. V. Zhikov, A. A. Shkalikov, “To the memory of Boris Moiseevich Levitan (on the 100th anniversary of his birth)”, Uspekhi Mat. Nauk, 71:3(429) (2016), 207–209; Russian Math. Surveys, 71:3 (2016), 601–603
2014
102.
V. V. Zhikov, A. A. Shkalikov, “In memory of Boris Moiseevich Levitan (1914–2004)”, Tr. Mosk. Mat. Obs., 75:2 (2014), 105–106; Trans. Moscow Math. Soc., 75 (2014), 87–88
2011
103.
M. S. Agranovich, I. V. Astashova, L. A. Bagirov, V. V. Vlasov, V. V. Zhikov, Yu. S. Ilyashenko, V. V. Kozlov, A. A. Kon'kov, S. I. Pokhozhaev, E. V. Radkevich, N. Kh. Rozov, I. N. Sergeev, A. L. Skubachevskii, G. A. Chechkin, A. S. Shamaev, T. A. Shaposhnikova, “Vladimir Alexandrovich Kondratiev. July 2, 1935 – March 11, 2010”, CMFD, 39 (2011), 5–10; Journal of Mathematical Sciences, 190:1 (2013), 1–7
104.
I. V. Astashova, A. V. Borovskikh, V. V. Bykov, A. Yu. Goritskii, N. V. Denisova, V. V. Zhikov, Yu. S. Ilyashenko, T. O. Kapustina, V. V. Kozlov, A. A. Kon'kov, I. V. Matrosov, E. V. Radkevich, O. S. Rozanova, È. R. Rozendorn, N. Kh. Rozov, M. S. Romanov, I. N. Sergeev, I. V. Filimonova, A. V. Filinovskii, G. A. Chechkin, A. S. Shamaev, T. A. Shaposhnikova, “Olga Arsenjevna Oleinik”, Tr. Semim. im. I. G. Petrovskogo, 28 (2011), 5–7; J. Math. Sci. (N. Y.), 179:3 (2011), 345–346
2003
105.
T. D. Venttsel', V. S. Vladimirov, V. V. Zhikov, A. M. Il'in, V. A. Il'in, V. A. Kondrat'ev, L. D. Kudryavtsev, E. F. Mishchenko, S. M. Nikol'skii, Yu. S. Osipov, E. V. Radkevich, N. Kh. Rozov, V. A. Sadovnichii, L. D. Faddeev, G. A. Chechkin, A. S. Shamaev, T. A. Shaposhnikova, A. A. Shkalikov, “Ol'ga Arsen'evna Oleinik (obituary)”, Uspekhi Mat. Nauk, 58:1(349) (2003), 165–174; Russian Math. Surveys, 58:1 (2003), 161–172
1996
106.
N. S. Bakhvalov, A. Yu. Belyaev, M. I. Vishik, V. V. Zhikov, V. P. Maslov, O. A. Oleinik, G. P. Panasenko, A. L. Piatnitski, “Sergei Mikhailovich Kozlov (obituary)”, Uspekhi Mat. Nauk, 51:4(310) (1996), 145–146; Russian Math. Surveys, 51:4 (1996), 723–725