Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Chechkin, Gregory Aleksandrovich

Chechkin, Gregory Aleksandrovich
Professor
Doctor of physico-mathematical sciences (2007)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
Birth date: 7.06.1966
E-mail:
Website: https://abris.tv/grisha
Keywords: homogenization of differential operators; spectral theory of differential operators; asymptotic methods; integral estimates of solutions of PDE; behavior of thin plates, rod structures and junctions; microinhomogenious media.
UDC: 517.9, 517.946, 517.95, 517.956.2, 517.956.225, 517.956.226, 517.956.6, 517.956.8, 517.98, 517.984.4, 517.984.6, 519.632.4, 517.955.8
MSC: 35b20, 35b27, 35b40, 35b45, 35c20, 35j05, 35j25, 35m10, 35p15, 74b99, 74k10, 74k15, 74k20, 74k30, 74q99, 35J25, 35B25, 39A10, 39A11, 39A70, 39B62, 41A44, 45A05

Subject:

Boundary homogenization for PDE in domains with microinhomogeneous structure. There were formulated and proved homogenization Theorems for boundary value problems with rapidly changing type of boundary conditions with periodic and nonperiodic boundary conditions. Also there were obtained the estimates of deviation of solutions of initial problem from solutions of homogenizaed problem. Vibration of thin plates, rods and junctions. Vibration of thin nonsymmetric plates with rough surface and other singular constructions were described. Weighted Korn type inequality for such domains were proved. Homogenization of random structures. We gave new definition of domains with random structure and proved homogenization theroems. Domains with oscillating boundary. We studied the behavior of bodies with the oscillation of external boundary and internal perforation. Also there were proved homogenization theorems and were constructed leading terms of the asymptotic expansion of solutions with respect to the small parameter characterized the microinhomogenity.Singular Measures and homogenization. We introduced new approach to homogenization problems in domains with thin and infinitisimally thin elements. We define the Sobolev function-spaces, proved the embedding theorems and Weyl-type theorems. Also we proved homogenization theorems for such structures.

Biography

Graduated from Faculty of Mathematics and Mechanics of M. V. Lomonosov Moscow State University (MSU) in 1988 (department of differential equations). Ph.D. thesis was defended in 1992 (scientific advisor — academitioan professor Olga Oleinik). Doctor of Mathematics (habilitation) in 2007. A list of my works contains more than 110 titles (including two monographs). Since 1994 I have led the research seminar at MSU on homogenization theory. I was an invited professor in few universities (France, Italy, Japan, Norway, Spain, USA). I am a scientific advisor of graduate students.

First place in Young Scientists Competition, 1988, Moscow State University. I won the competition in Moscow State University and became the International Research Scholar — MUSSIA (Indiana University, Bloomington, 1990.) Prize winner of the french PRO MATHEMATICA grants for Young Scientists (1992–1994, 1996–1998). I gave more then 10 plenary and invited lectures at international conferences and congresses.

   
Main publications:
  • The Boundary Value Problem in Domains with Very Rapidly Oscillating Boundary (jointly with A. Friedman and A. L. Piatnitski) // Journal of Mathematical Analysis and Applications (JMAA), 1999, v. 231, no. 1, p. 213–234.
  • Effective Membrane Permeability: Estimates and Low Concentration Asymptotics (Jointly with A. G. Belyaev and R. R. Gadylshin) // SIAM J. Appl. Math., 2000, v. 60, no. 1, p. 84–108.

https://www.mathnet.ru/eng/person8304
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/314038

Publications in Math-Net.Ru Citations
2024
1. Yu. A. Alkhutov, G. A. Chechkin, “On the Boyarsky–Meyers estimate for the solution of the Dirichlet problem for a second-order linear elliptic equation with drift”, CMFD, 70:1 (2024),  1–14  mathnet
2. Yu. A. Alkhutov, G. A. Chechkin, “Multidimensional Zaremba problem for the $p(\,\cdot\,)$-laplace equation. A Boyarsky–Meyers estimate”, TMF, 218:1 (2024),  3–22  mathnet  mathscinet; Theoret. and Math. Phys., 218:1 (2024), 1–18  scopus 2
3. M. D. Aliyev, Yu. A. Alkhutov, G. A. Chechkin, “On Zaremba problem for second–order linear elliptic equation with drift in case of limit exponent”, Ufimsk. Mat. Zh., 16:4 (2024),  3–13  mathnet; Ufa Math. J., 16:4 (2024), 1–11
4. V. N. Samokhin, G. A. Chechkin, “Nonclassical problems of the mathematical theory of hydrodynamic boundary layer”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 1,  11–20  mathnet  elib; Moscow University Mathematics Bulletin, 79:1 (2024), 11–21
5. V. N. Samokhin, G. A. Chechkin, “On attractors of MHD boundary layer of liquid with Ladyzhenskaya rheological law. Inuence of magnetic field on velocity asymptotics”, Zap. Nauchn. Sem. POMI, 536 (2024),  286–335  mathnet
2023
6. K. A. Bekmaganbetov, A. A. Tolemis, V. V. Chepyzhov, G. A. Chechkin, “On attractors of Ginzburg–Landau equations in domain with locally periodic microstructure. Subcritical, critical and supercritical cases”, Dokl. RAN. Math. Inf. Proc. Upr., 513 (2023),  9–14  mathnet  elib; Dokl. Math., 108:2 (2023), 346–351
7. K. A. Bekmaganbetov, A. M. Toleubai, G. A. Chechkin, “On asymptotics of attractors to Navier–Stockes system in anisotropic medium with small periodic obstacles”, Dokl. RAN. Math. Inf. Proc. Upr., 512 (2023),  42–46  mathnet  elib; Dokl. Math., 108:1 (2023), 277–281 1
8. M. A. Kisatov, V. N. Samokhin, G. A. Chechkin, “О пограничном слое Марангони в вязкой неньютоновской среде”, Tr. Semim. im. I. G. Petrovskogo, 33 (2023),  174–195  mathnet
2022
9. M. A. Kisatov, V. N. Samokhin, G. A. Chechkin, “Erratum to: On thermal boundary layer in a viscous non-Newtonian medium”, Dokl. RAN. Math. Inf. Proc. Upr., 507 (2022),  486  mathnet  mathscinet; Dokl. Math., 106:3 (2022), 486
10. M. A. Kisatov, V. N. Samokhin, G. A. Chechkin, “On thermal boundary layer in a viscous non-Newtonian medium”, Dokl. RAN. Math. Inf. Proc. Upr., 502 (2022),  28–33  mathnet  elib; Dokl. Math., 105:1 (2022), 23–27 2
11. K. A. Bekmaganbetov, V. V. Chepyzhov, G. A. Chechkin, “Strong convergence of attractors of reaction-diffusion system with rapidly oscillating terms in an orthotropic porous medium”, Izv. RAN. Ser. Mat., 86:6 (2022),  47–78  mathnet  mathscinet  zmath; Izv. Math., 86:6 (2022), 1072–1101  isi  scopus 6
12. K. A. Bekmaganbetov, A. M. Toleubai, G. A. Chechkin, “On attractors of 2D Navier–Stockes system in a medium with anisotropic variable viscosity and periodic obstacles”, Zap. Nauchn. Sem. POMI, 519 (2022),  10–34  mathnet
2021
13. K. A. Bekmaganbetov, V. V. Chepyzhov, G. A. Chechkin, “On attractors of reaction–diffusion equations in a porous orthotropic medium”, Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021),  10–15  mathnet  zmath  elib; Dokl. Math., 103:3 (2021), 103–107  scopus 2
14. Yu. A. Alkhutov, G. A. Chechkin, “Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation”, Dokl. RAN. Math. Inf. Proc. Upr., 497 (2021),  3–6  mathnet  zmath  elib; Dokl. Math., 103:2 (2021), 69–71  scopus 14
2020
15. R. R. Bulatova, V. N. Samokhin, G. A. Chechkin, “On an Unsteady Boundary Layer of a Viscous Rheologically Complex Fluid”, Trudy Mat. Inst. Steklova, 310 (2020),  40–77  mathnet  mathscinet  elib; Proc. Steklov Inst. Math., 310 (2020), 32–69  isi  scopus 2
2019
16. R. R. Bulatova, V. N. Samokhin, G. A. Chechkin, “Equations of symmetric MHD-boundary layer of viscous fluid with Ladyzhenskaya rheology law”, Tr. Semim. im. I. G. Petrovskogo, 32 (2019),  72–90  mathnet  elib; J. Math. Sci. (N. Y.), 244:2 (2020), 158–169  scopus 2
2018
17. R. R. Gadyl'shin, A. L. Piatnitski, G. A. Chechkin, “On the asymptotic behaviour of eigenvalues of a boundary-value problem in a planar domain of Steklov sieve type”, Izv. RAN. Ser. Mat., 82:6 (2018),  37–64  mathnet  mathscinet  zmath  elib; Izv. Math., 82:6 (2018), 1108–1135  isi  scopus 11
2016
18. V. N. Samokhin, G. A. Chechkin, “Equations of boundary layer for a generalized newtonian medium near a critical point”, Tr. Semim. im. I. G. Petrovskogo, 31 (2016),  158–176  mathnet; J. Math. Sci. (N. Y.), 234:4 (2018), 485–496  scopus 11
19. S. T. Erov, G. A. Chechkin, “Vibrations of a fluid containing a wide spaced net with floats under its free surface”, Tr. Semim. im. I. G. Petrovskogo, 31 (2016),  38–62  mathnet; J. Math. Sci. (N. Y.), 234:4 (2018), 407–422  scopus
2015
20. T. A. Mel'nik, G. A. Chechkin, “Eigenvibrations of thick cascade junctions with ‘very heavy’ concentrated masses”, Izv. RAN. Ser. Mat., 79:3 (2015),  41–86  mathnet  mathscinet  zmath  elib; Izv. Math., 79:3 (2015), 467–511  isi  scopus 6
2014
21. I. V. Astashova, A. V. Borovskikh, V. V. Bykov, A. N. Vetokhin, A. Yu. Goritskii, N. A. Izobov, Yu. S. Ilyashenko, T. O. Kapustina, V. V. Kozlov, A. A. Kon'kov, I. V. Matrosov, V. V. Palin, N. Kh. Rozov, M. S. Romanov, I. N. Sergeev, E. V. Radkevich, O. S. Rozanova, I. V. Filimonova, A. V. Filinovskii, G. A. Chechkin, A. S. Shamaev, T. A. Shaposhnikova, “Scientific heritage of Vladimir Mikhailovich Millionshchikov”, Tr. Semim. im. I. G. Petrovskogo, 30 (2014),  5–41  mathnet; J. Math. Sci. (N. Y.), 210:2 (2015), 115–134
2013
22. A. Yu. Linkevich, S. V. Spiridonov, G. A. Chechkin, “Homogenization of stratified dilatant fluid”, CMFD, 48 (2013),  75–83  mathnet; Journal of Mathematical Sciences, 202:6 (2014), 849–858  scopus 2
2011
23. G. A. Chechkin, Yu. O. Koroleva, L.-E. Persson, P. Wall, “A new weighted Friedrichs-type inequality for a perforated domain with a sharp constant”, Eurasian Math. J., 2:1 (2011),  81–103  mathnet  mathscinet  zmath 3
24. V. N. Samokhin, G. M. Fadeeva, G. A. Chechkin, “Equations of the boundary layer for a modified Navier-Stokes system”, Tr. Semim. im. I. G. Petrovskogo, 28 (2011),  329–361  mathnet  zmath  elib; J. Math. Sci. (N. Y.), 179:4 (2011), 557–577  scopus 21
25. A. Yu. Linkevich, S. V. Spiridonov, G. A. Chechkin, “On boundary layer of Newtonian fluid, flowing on a rough surface and percolating through a perforated obstacle”, Ufimsk. Mat. Zh., 3:3 (2011),  93–104  mathnet  zmath 6
26. R. R. Gadyl'shin, Yu. O. Koroleva, G. A. Chechkin, “On the asymptotics of a solution of a boundary value problem in a domain perforated along boundary”, Vestnik Chelyabinsk. Gos. Univ., 2011, no. 14,  27–36  mathnet
2009
27. T. A. Mel'nik, G. A. Chechkin, “Asymptotic analysis of boundary-value problems in thick three-dimensional multi-level junctions”, Mat. Sb., 200:3 (2009),  49–74  mathnet  mathscinet  zmath  elib; Sb. Math., 200:3 (2009), 357–383  isi  scopus 14
2006
28. Y. Amirat, G. A. Chechkin, R. R. Gadyl'shin, “Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with oscillating boundary”, Zh. Vychisl. Mat. Mat. Fiz., 46:1 (2006),  102–115  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 46:1 (2006), 97–110  scopus 31
2005
29. G. A. Chechkin, “Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many “light” concentrated masses situated on the boundary. Two-dimensional case”, Izv. RAN. Ser. Mat., 69:4 (2005),  161–204  mathnet  mathscinet  zmath  elib; Izv. Math., 69:4 (2005), 805–846  isi  elib  scopus 31
2004
30. G. A. Chechkin, “Estimation of Solutions of Boundary-Value Problems in Domains with Concentrated Masses Located Periodically along the Boundary: Case of Light Masses”, Mat. Zametki, 76:6 (2004),  928–944  mathnet  mathscinet  zmath; Math. Notes, 76:6 (2004), 865–879  isi  scopus 10
31. G. A. Chechkin, “Splitting of a multiple eigenvalue in a problem on concentrated masses”, Uspekhi Mat. Nauk, 59:4(358) (2004),  205–206  mathnet  mathscinet  zmath; Russian Math. Surveys, 59:4 (2004), 790–791  isi  scopus 12
2003
32. V. A. Kondratiev, G. A. Chechkin, “On the Asymptotics of Solutions of the Lavrent'ev–Bitsadze Equation in a Partially Perforated Domain”, Differ. Uravn., 39:5 (2003),  645–655  mathnet  mathscinet; Differ. Equ., 39:5 (2003), 681–693
2002
33. V. A. Kondratiev, G. A. Chechkin, “Homogenization of the Lavrent'ev–Bitsadze Equation in a Partially Perforated Domain”, Differ. Uravn., 38:10 (2002),  1390–1396  mathnet  mathscinet; Differ. Equ., 38:10 (2002), 1481–1487 1
34. M. E. Perez, G. A. Chechkin, E. I. Yablokova, “On eigenvibrations of a body with “light” concentrated masses on the surface”, Uspekhi Mat. Nauk, 57:6(348) (2002),  195–196  mathnet  mathscinet  zmath; Russian Math. Surveys, 57:6 (2002), 1240–1242  isi  scopus 24
35. G. A. Chechkin, E. A. Pichugina (Akimova), “On Weighted Korn's Inequality for a Thin Nonsymmetric Plate”, Trudy Mat. Inst. Steklova, 236 (2002),  347–353  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 236 (2002), 334–340 1
36. E. I. Doronina, G. A. Chechkin, “On Eigenvibrations of a Body with Many Concentrated Masses Located Nonperiodically along the Boundary”, Trudy Mat. Inst. Steklova, 236 (2002),  158–166  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 236 (2002), 148–156 6
2001
37. A. G. Belyaev, A. L. Piatnitski, G. A. Chechkin, “Averaging in a perforated domain with an oscillating third boundary condition”, Mat. Sb., 192:7 (2001),  3–20  mathnet  mathscinet  zmath  elib; Sb. Math., 192:7 (2001), 933–949  isi  scopus 31
38. E. I. Doronina, G. A. Chechkin, “On the averaging of solutions of a second-order elliptic equation with nonperiodic rapidly changing boundary conditions”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2001, no. 1,  14–19  mathnet  mathscinet  zmath 3
1999
39. A. Yu. Belyaev, G. A. Chechkin, “Averaging of operators with a fine-scaled structure of boundary conditions”, Mat. Zametki, 65:4 (1999),  496–510  mathnet  mathscinet  zmath; Math. Notes, 65:4 (1999), 418–429  isi 28
40. R. R. Gadyl'shin, G. A. Chechkin, “A boundary value problem for the Laplacian with rapidly changing type of boundary conditions in a multi-dimensional domain”, Sibirsk. Mat. Zh., 40:2 (1999),  271–287  mathnet  mathscinet  zmath; Siberian Math. J., 40:2 (1999), 229–244  isi 29
1998
41. A. G. Belyaev, A. L. Piatnitski, G. A. Chechkin, “Asymptotic behavior of the solution of a boundary value problem in a punctured domain with an oscillating boundary”, Sibirsk. Mat. Zh., 39:4 (1998),  730–754  mathnet  mathscinet  zmath; Siberian Math. J., 39:4 (1998), 621–644  isi 56
1995
42. A. G. Belyaev, G. A. Chechkin, “Homogenization of a mixed boundary-value problem for the Laplace operator in the case of an insoluble 'limit' problem”, Mat. Sb., 186:4 (1995),  47–60  mathnet  mathscinet  zmath; Sb. Math., 186:4 (1995), 511–525  isi 6
1993
43. O. A. Oleinik, G. A. Chechkin, “On boundary-value problems for elliptic equations with rapidly changing type of boundary conditions”, Uspekhi Mat. Nauk, 48:6(294) (1993),  163–164  mathnet  mathscinet  zmath; Russian Math. Surveys, 48:6 (1993), 173–175  isi 15
44. G. A. Chechkin, “Averaging of boundary value problems with a singular perturbation of the boundary conditions”, Mat. Sb., 184:6 (1993),  99–150  mathnet  mathscinet  zmath; Russian Acad. Sci. Sb. Math., 79:1 (1994), 191–222  isi 60

2023
45. I. V. Astashova, A. V. Borovskikh, V. V. Bykov, A. N. Vetokhin, A. Goritsky, N. V. Denisova, Yu. S. Ilyashenko, T. O. Kapustina, A. A. Kon'kov, V. V. Palin, E. V. Radkevich, V. V. Rogachev, O. S. Rozanova, M. S. Romanov, I. N. Sergeev, I. V. Filimonova, A. V. Filinovskii, G. A. Chechkin, A. S. Shamaev, M. V. Shamolin, T. A. Shaposhnikova, “К 70-летию Валерия Васильевича Козлова”, Tr. Semim. im. I. G. Petrovskogo, 33 (2023),  3–7  mathnet
2011
46. M. S. Agranovich, I. V. Astashova, L. A. Bagirov, V. V. Vlasov, V. V. Zhikov, Yu. S. Ilyashenko, V. V. Kozlov, A. A. Kon'kov, S. I. Pokhozhaev, E. V. Radkevich, N. Kh. Rozov, I. N. Sergeev, A. L. Skubachevskii, G. A. Chechkin, A. S. Shamaev, T. A. Shaposhnikova, “Vladimir Alexandrovich Kondratiev. July 2, 1935 – March 11, 2010”, CMFD, 39 (2011),  5–10  mathnet  mathscinet; Journal of Mathematical Sciences, 190:1 (2013), 1–7
47. I. V. Astashova, A. V. Borovskikh, V. V. Bykov, A. Yu. Goritskii, N. V. Denisova, V. V. Zhikov, Yu. S. Ilyashenko, T. O. Kapustina, V. V. Kozlov, A. A. Kon'kov, I. V. Matrosov, E. V. Radkevich, O. S. Rozanova, È. R. Rozendorn, N. Kh. Rozov, M. S. Romanov, I. N. Sergeev, I. V. Filimonova, A. V. Filinovskii, G. A. Chechkin, A. S. Shamaev, T. A. Shaposhnikova, “Olga Arsenjevna Oleinik”, Tr. Semim. im. I. G. Petrovskogo, 28 (2011),  5–7  mathnet  elib; J. Math. Sci. (N. Y.), 179:3 (2011), 345–346
2007
48. I. V. Astashova, L. A. Bagirov, A. V. Borovskikh, V. V. Bykov, A. N. Vetokhin, A. Yu. Goritskii, G. V. Grishina, N. V. Denisova, Yu. S. Ilyashenko, T. O. Kapustina, V. V. Kozlov, A. A. Kon'kov, I. V. Matrosov, V. M. Millionshchikov, V. A. Nikishkin, E. V. Radkevich, O. S. Rozanova, È. R. Rozendorn, N. Kh. Rozov, V. A. Sadovnichii, V. S. Samovol, I. N. Sergeev, I. V. Filimonova, A. V. Filinovskii, A. F. Filippov, T. S. Khachlaev, G. A. Chechkin, A. S. Shamaev, T. A. Shaposhnikova, “Vladimir Alexandrovich Kondratiev on the 70th anniversary of his birth”, Tr. Semim. im. I. G. Petrovskogo, 26 (2007),  5–28  mathnet  mathscinet; J. Math. Sci. (N. Y.), 143:4 (2007), 3183–3197
2005
49. I. V. Astashova, L. A. Bagirov, V. V. Bykov, A. N. Vetokhin, A. Yu. Goritskii, G. V. Grishina, Yu. S. Ilyashenko, T. O. Kapustina, V. V. Kozlov, A. A. Kon'kov, O. B. Lupanov, I. V. Matrosov, V. M. Millionshchikov, V. A. Nikishkin, E. V. Radkevich, O. S. Rozanova, È. R. Rozendorn, N. Kh. Rozov, V. A. Sadovnichii, V. S. Samovol, I. N. Sergeev, I. V. Filimonova, A. V. Filinovskii, A. F. Filippov, T. S. Khachlaev, G. A. Chechkin, A. S. Shamaev, T. A. Shaposhnikova, A. A. Shkalikov, “Vladimir Aleksandrovich Kondrat'ev”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2005, no. 5,  77–79  mathnet 1
2003
50. T. D. Venttsel', V. S. Vladimirov, V. V. Zhikov, A. M. Il'in, V. A. Il'in, V. A. Kondrat'ev, L. D. Kudryavtsev, E. F. Mishchenko, S. M. Nikol'skii, Yu. S. Osipov, E. V. Radkevich, N. Kh. Rozov, V. A. Sadovnichii, L. D. Faddeev, G. A. Chechkin, A. S. Shamaev, T. A. Shaposhnikova, A. A. Shkalikov, “Ol'ga Arsen'evna Oleinik (obituary)”, Uspekhi Mat. Nauk, 58:1(349) (2003),  165–174  mathnet  mathscinet  zmath; Russian Math. Surveys, 58:1 (2003), 161–172  isi
2000
51. T. D. Venttsel', Yu. A. Dubinskii, A. M. Il'in, V. A. Kondrat'ev, V. P. Mikhailov, A. A. Mal'tsev, O. A. Oleinik, S. I. Pokhozhaev, N. Kh. Rozov, G. A. Chechkin, T. A. Shaposhnikova, “Anatolii Sergeevich Kalashnikov (obituary)”, Uspekhi Mat. Nauk, 55:5(335) (2000),  161–168  mathnet  mathscinet; Russian Math. Surveys, 55:5 (2000), 977–985  isi

Presentations in Math-Net.Ru
1. On the Boyarsky-Meyers estimates
G. A. Chechkin
Seminar on Analysis, Differential Equations and Mathematical Physics
December 12, 2024 18:00
2. ON THE SINGULAR BEHAVIOR OF THE SPECTRUM OF PROBLEMS WITH CONCENTRATED MASSES
G. A. Chechkin
Seminar on nonlinear problems of partial differential equations and mathematical physics
February 6, 2024 18:00   
3. Boyarsky-Meyers Inequality for Elliptic Equations
G. A. Chechkin
V. I. Smirnov Seminar on Mathematical Physics
December 11, 2023 16:30   
4. On the increased integrability of gradients of solutions of boundary value problems
G. A. Chechkin
Scientific seminar on the differential and functional differential equations
December 5, 2023 12:00   
5. The Boyarsky–Meyers Inequality for Elliptic Equations
G. A. Chechkin
VI International Conference "Function Spaces. Differential Operators. Problems of Mathematical Education", dedicated to the centennial anniversary of the corresponding member of Russian Academy of Sciences, academician of European Academy of Sciences L.D. Kudryavtsev
November 17, 2023 12:55   
6. Elliptic Equations and Meyers Estimates
Yu. A. Alkhutov, G. A. Chechkin
International Conference Dedicated to the 100th Anniversary of the Birthday of V. S. Vladimirov (Vladimirov-100)
January 10, 2023 18:00   
7. On higher integrability of a gradient of a solution to the Zaremba problem on a fractal
G. A. Chechkin
Seminar on nonlinear problems of partial differential equations and mathematical physics
April 19, 2022 18:00   
8. On the Bojarskii–Meyers estimates
G. A. Chechkin
Russian-Chinese Conference «Integrable Systems and Geometry»
December 21, 2021 13:10   
9. Оценки Мейерса для решений задачи Зарембы
G. A. Chechkin

August 9, 2021 14:30
10. On singular behaviour of spectrum for problems with concentrated masses
G. A. Chechkin
V. I. Smirnov Seminar on Mathematical Physics
April 5, 2021 16:30   
11. On the Boundary Layers of a Rheologically Complex Fluid
G. A. Chechkin
International Conference "Classical Mechanics, Dynamical Systems and Mathematical Physics" on the occasion of V. V. Kozlov 70th birthday
January 23, 2020 15:45   
12. О влиянии концентрированных масс на колебание густого каскадного соединения
G. A. Chechkin
Differential geometry and applications
October 22, 2018 16:45
13. О густом каскадном соединении с концентрированными массами
G. A. Chechkin
Hamiltonian systems and statistical mechanics
May 14, 2018 16:45
14. Concentrated masses and "thick skin" effect
G. A. Chechkin, T. P. Chechkina
International Conference on Differential Equations and Dynamical Systems
July 5, 2014 11:50

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025