|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
T. L. Sabatulina, “On several models of population dynamics with distributed delay”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 227 (2023), 61–78 |
2. |
T. L. Sabatulina, V. V. Malygina, “Exponential stability and estimates of solutions to systems of functional differential equations”, Mat. Tr., 26:1 (2023), 130–149 ; Siberian Adv. Math., 33:3 (2023), 230–241 |
|
2020 |
3. |
A. S. Balandin, T. L. Sabatulina, “On oscillation of solutions for linear autonomous functional differential equations with two delays”, Sib. Èlektron. Mat. Izv., 17 (2020), 1900–1920 |
|
2019 |
4. |
A. S. Balandin, T. L. Sabatulina, “Solvability of inhomogeneous autonomous differential equation with aftereffect on the negative semi-axis”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 3, 3–18 ; Russian Math. (Iz. VUZ), 63:3 (2019), 1–14 |
1
|
|
2018 |
5. |
T. L. Sabatulina, “On oscillation of solutions for some nonlinear equations of population dynamics”, Tambov University Reports. Series: Natural and Technical Sciences, 23:124 (2018), 696–706 |
|
2017 |
6. |
T. L. Sabatulina, “Oscillating and sign-definite solutions to autonomous functional-differential equations”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 132 (2017), 113–116 ; J. Math. Sci. (N. Y.), 230:5 (2018), 766–769 |
2
|
7. |
A. S. Balandin, T. L. Sabatulina, “Solvability of autonomous differential equation with aftereffect on negative semi-axis”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 10, 26–37 ; Russian Math. (Iz. VUZ), 61:10 (2017), 21–31 |
2
|
|
2015 |
8. |
A. S. Balandin, T. L. Sabatulina, “The local stability of a population dynamics model in conditions of deleterious effects”, Sib. Èlektron. Mat. Izv., 12 (2015), 610–624 |
3
|
|
2014 |
9. |
T. L. Sabatulina, V. V. Malygina, “On stability of a differential equation with aftereffect”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 4, 25–41 ; Russian Math. (Iz. VUZ), 58:4 (2014), 20–34 |
8
|
|
2012 |
10. |
T. L. Sabatulina, “On stability of a linear autonomоus differential equation with aftereffect”, Izv. IMI UdGU, 2012, no. 1(39), 117–118 |
1
|
|
2010 |
11. |
T. L. Sabatulina, “Positiveness conditions for the Cauchy function for differential equations with distributed delay”, Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 11, 50–62 ; Russian Math. (Iz. VUZ), 54:11 (2010), 44–55 |
7
|
|
2009 |
12. |
T. L. Sabatulina, “Об автономном дифференциальном уравнении с сосредоточенным и распределённым запаздываниями”, Matem. Mod. Kraev. Zadachi, 3 (2009), 192–194 |
1
|
|
2008 |
13. |
V. V. Malygina, T. L. Sabatulina, “Sign-definiteness of solutions and stability of linear differential equations with variable distributed delay”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 8, 73–77 ; Russian Math. (Iz. VUZ), 52:8 (2008), 61–64 |
10
|
14. |
T. L. Sabatulina, “On the positiveness of the Cauchy function of some integro-differential equation”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 2, 122–123 |
|
2007 |
15. |
T. L. Sabatulina, V. V. Malygina, “Several stability tests for linear autonomous differential equations with distributed delay”, Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 6, 55–63 ; Russian Math. (Iz. VUZ), 51:6 (2007), 52–60 |
12
|
|
Presentations in Math-Net.Ru |
|
|
Organisations |
|
|
|
|