Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Tkachev, Dmitry Leonidovich

Statistics Math-Net.Ru
Total publications: 17
Scientific articles: 17

Number of views:
This page:1464
Abstract pages:5169
Full texts:1226
References:812
Associate professor
Doctor of physico-mathematical sciences (1998)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
Birth date: 28.03.1958
E-mail:
Keywords: Lopatinsky condition, Lyapunov stability, viscous heatconducting gas, well-posedness, a shock wave, the hyperbolic equations and systems, Boltzmann еquation, hydrodynamical models of carry of a charge in semiconductors, Sobolev-type system, weakened solution, local- and global-in-time existence, Lyapunov's asymptotic stability, stabilization method.
UDC: 517.95, 517.956.3, 517.958, 517.956

Subject:

Boundary problems for equations and systems of the equations in partial derivatives in domains with nonsmooth boundary, problems of a flow for ideal, viscous heatconducting gases, the description of carry of a charge in semiconductors, systems of conservation laws.

Biography

EDUCATION
1999 Doctor of Science (the higher, post-doctorate degree) in Differential Equations and Mathematical Physics, Novosibirsk State University, Novosibirsk, Russia
1988 Ph.D. in Differential Equations and Mathematical Physics, Novosibirsk State University, Novosibirsk, Russia
1985–1988 Post-graduate studies in Differential Equations and Mathematical Physics, Novosibirsk State University, Novosibirsk, USSR
1982–1985 Probation period in Novosibirsk State University, Novosibirsk, USSR
1979 Diploma (= M.S.) in Differential Equations and Mathematical Physics, Novosibirsk State University, Novosibirsk, USSR
PROFESSIONAL AND ACADEMIC EXPERIENCE
2000–present Novosibirsk State University, Professor of Differential Equations
1995–2000 Novosibirsk State University, Associate Professor of Differential Equations
1989–1995 Novosibirsk State University, Senior research worker
2001–present Novosibirsk Institute of Mathematics Russian Academy of Sciences, Siberian Branch, Leading research worker.

   
Main publications:
  1. A. M. Blokhin, D. L. Tkachev, Mixed problems for the wave equation in coordinate domains, Nova Science Publishers, Inc., New York, 1998, 133 p.  mathscinet  zmath
  2. A. M. Blokhin, D. L. Tkachev, Yu. Yu. Pashinin, “Stability of shock waves in the problem of flowing around an infinite planar wedge: the case of strong shock”, Proceedings of the International Conference “Eleventh International Conference on Hyperbolic Problems. Theory. Numerics. Applications” (Lyon, France, July 17–21, 2006), 1037–1045
  3. A. M. Blokhin, D. L. Tkachev, L. O. Baldan, “Study of the stability in the problem on flowing around a wedge. The case of strong wave”, Mathematical Analysis and Applications, 319 (2006), 248–277  crossref  mathscinet  zmath
  4. A. M. Blokhin, D. L. Tkachev, L. O. Baldan, “Well-posedness of a modified initial-boundary value problem on stability of shock waves in a viscous gas. Part I”, Mathematical Analysis and Applications, 331 (2007), 408–423  crossref  mathscinet  zmath
  5. A. M. Blokhin, D. L. Tkachev, D. V. Esipov, “Well-posedness of a modified initial-boundary value problem on stability of shock waves in a viscous gas. Part II”, Mathematical Analysis and Applications, 331 (2007), 424–442  crossref  mathscinet  zmath
  6. A. M. Blokhin, D. L. Tkachev, Yu. Yu. Pashinin, “Stability condition for the strong shock wave in the problem on flow around infinite plane wedge”, Nonlinear Analysis. Hybrid Systems, 2:1 (2008), 1–17  crossref  mathscinet  zmath
  7. A. M. Blokhin. D. L. Tkachev, “Representation of the solution to a model problem in semiconductor physics”, Mathematical Analysis and Applications, 341 (2008), 1468–1475  crossref  mathscinet  zmath

https://www.mathnet.ru/eng/person37076
List of publications on Google Scholar
List of publications on ZentralBlatt
https://orcid.org/0000-0002-1098-0415

Publications in Math-Net.Ru Citations
2023
1. D. L. Tkachev, E. A. Biberdorf, “Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel (Vinogradov-Pokrovski model)”, Sib. Èlektron. Mat. Izv., 20:2 (2023),  1269–1289  mathnet
2. D. L. Tkachev, “The spectrum and Lyapunov linear instability of the stationary state for polymer fluid flows: the Vinogradov–Pokrovskii model”, Sibirsk. Mat. Zh., 64:2 (2023),  423–440  mathnet; Siberian Math. J., 64:2 (2023), 407–423 2
2022
3. A. M. Blokhin, D. L. Tkachev, “Lyapunov instability of stationary flows of a polymeric fluid in a channel with perforated walls”, Mat. Sb., 213:3 (2022),  3–20  mathnet  mathscinet; Sb. Math., 213:3 (2022), 283–299  isi  scopus 3
2021
4. A. M. Blokhin, D. L. Tkachev, “Линейная неустойчивость состояния покоя для МГД модели несжимаемой полимерной жидкости в случае абсолютной проводимости”, Mat. Tr., 24:1 (2021),  35–51  mathnet 1
2020
5. A. M. Blokhin, A. S. Rudometova, D. L. Tkachev, “An MHD model of an incompressible polymeric fluid: linear instability of a steady state”, Sib. Zh. Ind. Mat., 23:3 (2020),  16–30  mathnet  elib; J. Appl. Industr. Math., 14:3 (2020), 430–442  scopus
6. A. M. Blokhin, D. L. Tkachev, “Stability of Poiseuille-type flows in an MHD model of an incompressible polymeric fluid”, Mat. Sb., 211:7 (2020),  3–23  mathnet  mathscinet  elib; Sb. Math., 211:7 (2020), 901–921  isi  scopus 11
2018
7. A. M. Blokhin, D. L. Tkachev, A. V. Yegitov, “Asymptotic formula for the spectrum of the linear problem describing periodic polymer flows in the infinite channel”, Prikl. Mekh. Tekh. Fiz., 59:6 (2018),  39–51  mathnet  elib; J. Appl. Mech. Tech. Phys., 59:6 (2018), 992–1003 7
8. A. M. Blokhin, D. L. Tkachev, A. V. Yegitov, “Local solvability of the problem of the van der Waals gas flow around an infinite plane wedge in the case of a weak shock wave”, Sibirsk. Mat. Zh., 59:6 (2018),  1214–1239  mathnet  elib; Siberian Math. J., 59:6 (2018), 960–982  isi  scopus 2
9. A. M. Blokhin, A. V. Yegitov, D. L. Tkachev, “Asymptotics of the spectrum of a linearized problem of the stability of a stationary flow of an incompressible polymer fluid with a space charge”, Zh. Vychisl. Mat. Mat. Fiz., 58:1 (2018),  108–122  mathnet  elib; Comput. Math. Math. Phys., 58:1 (2018), 102–117  isi  scopus 20
2016
10. A. M. Blokhin, D. L. Tkachev, “Stability of a supersonic flow past a wedge with adjoint weak neutrally stable shock wave”, Mat. Tr., 19:2 (2016),  3–41  mathnet  elib; Siberian Adv. Math., 27:2 (2017), 77–102  scopus
2015
11. A. M. Blokhin, D. L. Tkachev, A. V. Yegitov, “Linear instability of the solutions in mathematical model that describe flows of polymer in an infinite channel”, Yakutian Mathematical Journal, 22:2 (2015),  16–27  mathnet  elib
12. A. M. Blokhin, A. V. Yegitov, D. L. Tkachev, “Linear instability of solutions in a mathematical model describing polymer flows in an infinite channel”, Zh. Vychisl. Mat. Mat. Fiz., 55:5 (2015),  850–875  mathnet  mathscinet  zmath  elib; Comput. Math. Math. Phys., 55:5 (2015), 848–873  isi  elib  scopus 29
2014
13. A. M. Blokhin, D. L. Tkachev, “Linear asymptotic instability of a stationary flow of a polymeric medium in a plane channel in the case of periodic perturbations”, Sib. Zh. Ind. Mat., 17:3 (2014),  13–25  mathnet  mathscinet; J. Appl. Industr. Math., 8:4 (2014), 467–478 23
2012
14. A. M. Blokhin, D. L. Tkachev, “Regularity of the solution and well-posedness of a mixed problem for an elliptic system with quadratic nonlinearity in gradients”, Zh. Vychisl. Mat. Mat. Fiz., 52:10 (2012),  1866–1882  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 52:10 (2012), 1428–1444
2011
15. A. M. Blokhin, D. L. Tkachev, “Justification of the stabilization method for a mathematical model of charge transport in semiconductors”, Zh. Vychisl. Mat. Mat. Fiz., 51:8 (2011),  1495–1517  mathnet  mathscinet; Comput. Math. Math. Phys., 51:8 (2011), 1395–1417  isi  scopus
2009
16. A. M. Blokhin, D. L. Tkachev, “Stability of a supersonic flow about a wedge with weak shock wave”, Mat. Sb., 200:2 (2009),  3–30  mathnet  mathscinet  zmath  elib; Sb. Math., 200:2 (2009), 157–184  isi  scopus 14
1989
17. A. M. Blokhin, D. L. Tkachev, “A mixed problem for the wave equation in a domain with a corner (the scalar case)”, Sibirsk. Mat. Zh., 30:3 (1989),  16–23  mathnet  mathscinet  zmath; Siberian Math. J., 30:3 (1989), 358–364  isi 1

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024