Ground states and Gibbs measures of some models with a finite radius of interactions on Cayley tree.
Main publications:
1. Botirov G.I., Benedikt Jahnel, Christof Kuelske, Phase transition and Critical values of a nearest-neighbor system with uncountable local state space on Cayley trees// Mathematical Physics, Analysis and Geometry, 2014, DOI 10.1007/s11040-014-9158-1, 17, p.323-331.
2. Botirov G.I., Rozikov U.A., Eshkabilov YU.KH. Phase transitions for a model with uncountable set of spin values on a cayley tree// Lobachevskii Journal of Mathematics, 2013, ¹ 3, V.34, p. arXiv:1210.7311 10p.
3. Botirov G.I., Periodic ground states of a Hamiltonian on a Cayley tree.Mathematical Notes, 2010, 87:4, 582–585
4. Botirov G.I., Rozikov U.A., Potts model with competing interactions on the Cayley tree: The contour method.
5. Botirov G.I., Rozikov U.A., On q–component models on Cayley tree: the general case // Journal of Statistical Mech.: Theory and Exper. 2006. P10006, 8 p.
G. I. Botirov, Z. E. Mustafoeva, “Gibbs measures for the Potts model with a countable set of spin values on a Cayley tree”, TMF, 214:2 (2023), 318–328; Theoret. and Math. Phys., 214:2 (2023), 273–281
2021
2.
G. I. Botirov, U. U. Qayumov, “Ground states for the Potts model with competing interactions and a countable set of spin values on a Cayley tree”, TMF, 209:2 (2021), 367–377; Theoret. and Math. Phys., 209:2 (2021), 1633–1642
Yu. Kh. Eshkabilov, G. I. Botirov, F. H. Haydarov, “Phase transitions for models with a continuum set of spin values on
a Bethe lattice”, TMF, 205:1 (2020), 146–155; Theoret. and Math. Phys., 205:1 (2020), 1372–1380
2017
4.
Golibjon I. Botirov, “Anisotropic Ising model with countable set of spin values on Cayley tree”, J. Sib. Fed. Univ. Math. Phys., 10:3 (2017), 305–309
G. I. Botirov, “Functional equations for the Potts model with competing interactions on a Cayley tree”, Nanosystems: Physics, Chemistry, Mathematics, 7:3 (2016), 401–404
2010
6.
G. I. Botirov, “Periodic Ground States of a Hamiltonian on a Cayley Tree”, Mat. Zametki, 87:4 (2010), 624–627; Math. Notes, 87:4 (2010), 582–585
2007
7.
G. I. Botirov, U. A. Rozikov, “Potts model with competing interactions on the Cayley tree: The contour method”, TMF, 153:1 (2007), 86–97; Theoret. and Math. Phys., 153:1 (2007), 1423–1433