Emelʹyanov, E. Yu.; Kohler, U.; Räbiger, F.; Wolff, M. P. H., “Stability and almost periodicity of asymptotically dominated semigroups of positive operators”, Proc. Amer. Math. Soc., 129:9 (2001), 2633-2642
Eduard Yu. Emel'yanov, Manfred P. H. Wolff, “Positive operators on Banach spaces ordered by strongly normal cones. Positivity and its applications”, Positivity, 7 (2003), 3-22
Eduard Yu. Emel'yanov, Non-spectral asymptotic analysis of one-parameter operator semigroups., Operator Theory: Advances and Applications, 173, Birkhäuser Verlag, Basel, 2007
Aydın, A.; Emelyanov, E. Yu.; Erkurşun Özcan, N.; Marabeh, M. A. A., “Compact-like operators in lattice-normed spaces”, Indag. Math. (N.S.), 29:2 (2018), 633-656
E. Emelyanov, “On compact KB operators in Banach lattices”, Positivity, 29:1 (2025), N 15
2024
2.
E. Emelyanov, S. Gorokhova, “Free uniformly complete vector lattices”, Positivity, 28:4 (2024), N 48
3.
S. Alpay, E. Emelyanov, S. Gorokhova, “Enveloping norms of regularly P-operators in Banach lattices”, Positivity, 28:3 (2024), N 37
4.
S. Alpay, E. Emelyanov, “Duality and norm completeness in the classes of limitedly Lwc and Dunford–Pettis Lwc operators”, Turkish Journal of Mathematics, 48:2 (2024), 267–278
2023
5.
E. Emelyanov, “Relative uniform convergence in vector lattices: odds and ends”, Journal of Mathematical Sciences (United States), 271:6 (2023), 733–742
E. Emelyanov, S. Gorokhova, “Operators affiliated to Banach lattice properties and their enveloping norms”, Turkish Journal of Mathematics, 6:47 (2023), 1659–1673https://journals.tubitak.gov.tr/math/vol47/iss6/5 (Number of article 5)
7.
S. G. Gorokhova, E. Y. Emelyanov, “On operators dominated by the Kantorovich-Banach and Levi operators in locally solid lattices”, Siberian Mathematical Journal, 64:3 (2023), 720–724https://sciact.math.nsc.ru/file/article_file/2124 (Angliiskaya versiya stati “Ob operatorakh, mazhoriruemykh operatorami Kantorovicha - Banakha i operatorami Levi v lokalno solidnykh reshetkakh” opublikovannoi vo Vladikavkazskom matematicheskom zhurnale (Vladikavkaz Mathematical Journal). 2022. T.24. #3. S.55-61.)
2022
8.
Ş. Alpay, E. Emelyanov, S. Gorokhova, “$o\tau$-continuous, Lebesgue, KB, and Levi operators between vector lattices and topological vector spaces”, Result. Math., 77:3 (2022)
S. G. Gorokhova, E. Yu. Emelyanov, “On operators dominated by Kantorovich–Banach operators and Lévy operators in locally solid lattices”, Vladikavkaz Mathematical Journal, 24:3 (2022), 55–61
2021
10.
A. Aydin, E. Emelyanov, S. Gorokhova, “Full lattice convergence on Riesz spaces”, Indag. Math. (N.S.), 32:3 (2021), 658–690
E. Yu. Emelyanov, M. A. A. Marabeh, “On the Brezis–Lieb Lemma and Its Extensions”, Operator Theory and Differential Equations. Selected papers based on the presentations at the 15th conference on order analysis and related problems of mathematical modeling, Vladikavkaz, Russia, July 15–20, 2019, Trends in Mathematics, eds. Kusraev, Anatoly G., Birkhäuser/Springer, 2021, 25–35
E. Yu. Emelyanov, “On the domination problem for Lebesgue, KB, and Levi operators”, Poryadkovyi analiz i smezhnye voprosy matematicheskogo modelirovaniya. Teoriya operatorov i differentsialnye uravneniya. tezisy dokladov XVI Mezhdunarodnoi nauchnoi konferentsii. (Vladikavkaz, 2021), Yuzhnyi matematicheskii institut Vladikavkazskogo nauchnogo tsentra Rossiiskoi akademii nauk i Pravitelstva Respubliki Severnaya Osetiya-Alaniya, Vladikavkaz, 2021, 31–32
2020
14.
E. Yu. Emelyanov, M. A. A. Marabeh, “Internal characterization of Brezis-Lieb spaces”, Positivity, 24:3 (2020), 585–592
Y. A. Dabboorasad, E. Emelyanov, M. A. A. Marabeh, “Order convergence is not topological in infinite-dimensional vector lattices”, Uzbek Math. J., 2020, no. 1, 159–166
E. Y. Emelyanov, S. G. Gorokhova, S. S. Kutateladze, “Unbounded order convergence and the Gordon theorem”, Vladikavk. matem. zhurn., 21:4 (2019), 56–62
A. Ayd{\i}n, E. Emelyanov, N. Erkurşun Özcan, M. A. A. Marabeh, “Unbounded p-convergence in lattice-normed vector lattices”, Siberian Advances in Mathematics, 29 (2019), 164–182
A. M. Dabboorasad, E. Yu. Emelyanov, “Unbounded convergence in the convergence vector lattices: a survey”, Vladikavk. matem. zhurn., 20:2 (2018), 49–56
A. Aydin, E. Emelyanov, N. Erkurşun Özcan, M. A. A. Marabeh, “Compact-like operators in lattice-normed spaces”, Indag. Math. (N.S.), 29:2 (2018), 633–656
E. Yu. Emelyanov, “Arkhimedizatsiya uporyadochennykh vektornykh prostranstv”, Matematicheskii forum (Itogi nauki. Yug Rossii), 10:1 (2016), 13–21
2015
27.
A. E. Gutman, E. Yu. Emelyanov, A. V. Matyukhin, “Nezamknutye arkhimedovy konusy v lokalno vypuklykh prostranstvakh”, Vladikavk. matem. zhurn., 17:3 (2015), 36–43
E. Yu. Emelyanov, “Asymptotically finite dimensional operators in Banach spaces. Recent developments and open problems”, Matematicheskii forum (Itogi nauki. Yug Rossii), 5 (2011), 57–62
2010
34.
E. Yu. Emel'yanov, “Asymptotic behavior of Lotz–Räbiger and martingale nets”, Siberian Math. J., 51:5 (2010), 810–817
35.
E. Yu. Emelyanov, R. Zaharopol, “Convergence of Lotz-Räbiger nets of operators on spaces of continuous functions”, Rev. Roum. Math. Pures Appl., 55:1 (2010), 1–26
36.
E. Emelyanov, N. Erkurşun Özcan, “Lotz-Räbiger’s nets of Markov operators in $L^1$-spaces”, J. Math. Anal. Appl., 371:2 (2010), 777–783
E. Yu. Emel'yanov, N. Erkursun, “Generalization of Eberlein's and Sine's ergodic theorems to $LR$-nets”, Vladikavkaz. Mat. Zh. Journal Profile, 9:3 (2007), 22–26
E. Yu. Emelyanov, “Positive asymptotically regular operators in L1-spaces and KB-spaces”, Proceedings of the conference “Positivity IV—Theory and Applications” (Dresden, Germany, July 25–29, 2005), ISBN 3-86005-512-7/pbk, eds. Weber, Martin R., TU Dresden, Institut für Analysis, Dresden, 2006, 53–61
42.
Ş. Alpay, E. Yu, Emelyanov, A. Binhadjah, “A positive doubly power bounded operator with a nonpositive inverse exists on any infinite-dimensional AL-space”, Positivity, 10:1 (2006), 105–110
E. Yu. Emelyanov, M. P. H. Wolff, “Asymptotic behavior of Markov semigroups on preduals of von Neumann algebras”, J. Math. Anal. Appl., 314:2 (2006), 749–763
E. Yu. Emelyanov, M. P. H. Wolff, “Asymptotic behaviour of Markov semigroups on non commutative $L^1$-spaces”, Quantum probability and infinite-dimensional analysis. Proceedings of the conference (Burg, (Spreewald) Germany, March 15–20, 2001), Quantum Probab. White Noise Anal., 15, eds. W. Freudenberg, World Scientific (ISBN 981-238-288-7/hbk), River Edge, NJ, 2003, 77–83
53.
E. Yu. Emelyanov, “Invariant densities and mean ergodicity of Markov operators”, Isr. J. Math., 136 (2003), 373–379
E. Yu. Emelyanov, M. P. H. Wolff, “Quasi constricted linear representations of abelian semigroups on Banach spaces”, Math. Nachr., 2002, no. 233–234, 103–110
2001
55.
E. Yu. Emelyanov, U. Kohler, F. Räbiger, M. P. H. Wolff, “Stability and almost periodicity of asymptotically dominated semigroups of positive operators”, Proc. Am. Math. Soc., 129:9 (2001), 2633–2642
E. Yu. Emelyanov, “Infinitesimals in vector lattices”: A. E. Gutman, E. Yu. Emel’yanov, A. G. Kusraev, G. A. Losenkov, A. V. Koptev, S. A. Malyugin,, Nonstandard analysis and vector lattices, Updated translation of the Russian original, Math. Appl., 525, eds. S. S. Kutateladze, Kluwer Acad. Publ., Dordrecht, 2000, 161–230
1999
59.
S. G. Gorokhova, È. Yu. Emel'yanov, “A Sufficient Condition for Order Boundedness of an Attractor for a Positive Mean Ergodic Operator in a Banach Lattice”, Siberian Adv. Math., 9:3 (1999), 78–85
60.
E. Yu. Emelyanov, M. P. H. Wolff, “Mean ergodicity on Banach lattices and Banach spaces”, Arch. Math., 72:3 (1999), 214–218
A. E. Gutman, E. Yu. Emelyanov, A. G. Kusraev, S. S. Kutateladze, Nestandartnyi analiz i vektornye reshetki, Izdatelstvo Instituta matematiki SO RAN, Novosibirsk, 1999 , x, 379 pp.
1997
62.
È. Yu. Emel'yanov, “Invariant homomorphisms of nonstandard extensions of Boolean algebras and vector lattices”, Siberian Math. J., 38:2 (1997), 244–252
63.
E. Yu. Emelyanov, “Banach lattices on which every power-bounded operator is mean ergodic”, Positivity, 1:4 (1997), 291–295
E. Yu. Emelyanov, “Invariant homomorphisms of nonstandard enlargements of Boolean algebras and vector lattices”, Siberian conference on applied and industrial mathematics dedicated to the memory of L. V. Kantorovich. Vol. 1. Novosibirsk (Russia), July 25–29, 1994, eds. Bokut’, L. A. (ed.) et al., Izdatel’stvo Instituta Matematiki SO RAN, Novosibirsk, 1997, 117–125
65.
E. Yu. Emelyanov, “Some aspects of the theory of bounded groups of operators in Banach spaces”, Siberian Adv. Math., 7:1 (1997), 26–31
1996
66.
E. Yu. Emelyanov, “Infinitesimal analysis and vector lattices”, Sib. Adv. Math., 6:1 (1996), 19–70
1995
67.
È. Yu. Emel'yanov, “An infinitesimal approach to the representation of vector lattices by spaces of continuous functions on a compactum”, Dokl. Akad. Nauk, 344:1 (1995), 9–11
68.
E. Yu. Emelyanov, “Order hulls of vector lattices”, Dokl. Math., 51:1 (1995), 54–55
69.
È. Yu. Emel'yanov, “Banach–Kantorovich spaces associated with the order hulls of decomposable lattice-normed spaces”, Siberian Math. J., 36:1 (1995), 66–77
1994
70.
È. Yu. Emel'yanov, “The order and regular hulls of Riesz spaces”, Siberian Math. J., 35:6 (1994), 1101–1108
71.
S. G. Gorokhova, È. Yu. Emel'yanov, “On the notion of stability of order convergence in vector lattices”, Siberian Math. J., 35:5 (1994), 912–916