Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Tarannikov, Yuriy Valerievich

Tarannikov, Yuriy Valerievich
Candidate of physico-mathematical sciences (1994)
Speciality: 01.01.09 (Discrete mathematics and mathematical cybernetics)
E-mail:
Keywords: Discrete mathematics, Boolean functions in cryptology, coding theory, combinatorics.
UDC: 519.7, 519.722

Subject:

Discrete mathematics, Boolean functions in cryptology, coding theory, combinatorics

   
Main publications:
  1. Tarannikov Yu, “On resilient Boolean functions with maximal possible nonlinearity”, Progress in Cryptology . INDOCRYPT 2000, First International Conference in Cryptology in India, Calcutta, India, December 10–13, 2000. Proceedings, Lecture Notes in Computer Science, 1977, Springer-Verlag, Berlin, 2000, 19–30  crossref  mathscinet
  2. Potapov, V. N., Taranenko, A. A., Tarannikov, Yu. V., “An asymptotic lower bound on the number of bent functions”, Designs, Codes and Cryptography, 92:3 (2024), 639–651, Springer-Verlag, Berlin  crossref  mathscinet

https://www.mathnet.ru/eng/person27784
https://ru.wikipedia.org/wiki/Tarannikov,_Yurii_Valerevich
https://scholar.google.com/citations?user=LW9tGswAAAAJ&hl=en
https://mathscinet.ams.org/mathscinet/MRAuthorID/334186
https://elibrary.ru/author_items.asp?authorid=5401
ISTINA https://istina.msu.ru/workers/3343466
https://orcid.org/0000-0003-2101-800X
https://www.webofscience.com/wos/author/record/GYD-7811-2022
https://www.scopus.com/authid/detail.url?authorId=6602425161

Publications in Math-Net.Ru Citations
2023
1. I. P. Baksova, Yu. V. Tarannikov, “Bounds on the number of partitions of the vector space over a finite field into affine subspaces of the same dimension”, Prikl. Diskr. Mat. Suppl., 2023, no. 16,  5–8  mathnet
2022
2. Yu. V. Tarannikov, “On the existence of Agievich-primitive partitions”, Diskretn. Anal. Issled. Oper., 29:4 (2022),  104–123  mathnet  mathscinet 1
3. I. P. Baksova, Yu. V. Tarannikov, “The bounds on the number of partitions of the space ${\mathbf F}_2^m$ into $k$-dimensional affine subspaces”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 3,  21–25  mathnet  mathscinet  zmath; Moscow University Mathematics Bulletin, 77:3 (2022), 131–135 4
2016
4. A. V. Khalyavin, M. S. Lobanov, Yu. V. Tarannikov, “On plateaued Boolean functions with the same spectrum support”, Sib. Èlektron. Mat. Izv., 13 (2016),  1346–1368  mathnet  isi 3
5. A. V. Sauskan, Yu. V. Tarannikov, “On packings of $(n,k)$-products”, Sib. Èlektron. Mat. Izv., 13 (2016),  888–896  mathnet  isi 1
2014
6. Y. V. Tarannikov, “On ranks of subsets in the space of binary vectors admitting an embedding of a Steiner system $S(2,4,v)$”, Prikl. Diskr. Mat., 2014, no. 1(23),  73–76  mathnet 1
7. Y. V. Tarannikov, “Generalized proper matrices and constructing of $m$-resilient Boolean functions with maximal nonlinearity for expanded range of parameters”, Sib. Èlektron. Mat. Izv., 11 (2014),  229–245  mathnet 4
2006
8. Yu. V. Tarannikov, “On values of the affine rank of the support of spectrum of a plateaued function”, Diskr. Mat., 18:3 (2006),  120–137  mathnet  mathscinet  zmath  elib; Discrete Math. Appl., 16:4 (2006), 401–421  scopus 6
1997
9. Yu. V. Tarannikov, “On the class of Boolean functions uniformly distributed over balls with degree $1$”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1997, no. 5,  17–21  mathnet  mathscinet  zmath
1995
10. Yu. V. Tarannikov, “On some estimates for the weight of $l$-balanced Boolean functions”, Diskretn. Anal. Issled. Oper., 2:4 (1995),  80–96  mathnet  mathscinet  zmath 1
11. Yu. V. Tarannikov, “On the number of ordered pairs of $l$-balanced sets of length $n$”, Diskr. Mat., 7:3 (1995),  146–156  mathnet  mathscinet  zmath; Discrete Math. Appl., 5:5 (1995), 503–514
12. Yu. V. Tarannikov, “On a binary vector of length $n$ that is $l$-balanced with the largest number of binary vectors”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 3,  91–93  mathnet  mathscinet  zmath
1991
13. Yu. V. Tarannikov, “The class of $1$-balanced functions and the complexity of its realization”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1991, no. 2,  83–85  mathnet  mathscinet  zmath

Presentations in Math-Net.Ru
1. On the number of partitions of the hypercube $Z_q^n$ into large subcubes
Yu. V. Tarannikov
2024-ary quasigroups and related topics
November 1, 2024 11:00

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025