Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Zubkov, Alexandr Nikolaevich

Statistics Math-Net.Ru
in MathSciNet: 18 (18)
in zbMATH: 14 (14)
in Web of Science: 9 (9)
in Scopus: 13 (13)
Professor
Doctor of physico-mathematical sciences (1997)
Speciality: 01.01.06 (Mathematical logic, algebra, and number theory)
E-mail:
Keywords: profinite groups, algebraic groups, quivers, Schur superalgebras and affine supergroups, quantum groups, invariant theory.
   
Main publications:
  • Nonrepresentability of a free non-abelian pro-$p$-group by second-order matrices (russian), Siberian Math. J., 28 (1987), N 5, 64–69.
  • The lower central series of a pro-$p$-group of second-order general matrices, Preprint N 731, Siberian Division of Russian Academy of Science, Novosibirsk, 1987.
  • Varieties of pro-$p$-groups of second-order matrices, Algebra and Logic (Algebra i Logika, russian), 29 (1990), N 4, 287–301.
  • Varieties of metabelian pro-$p$-groups, Siberian Math. J. (russian), 33 (1992), N 5, 816–825.
  • On a generalization of the Razmyslov-Procesi theorem, Algebra and Logic (Algebra i Logika, russian), 35 (1996), N 4, 433–457.
  • Invariants of an adjoint action of classical groups, Algebra and Logic (Algebra i Logika, russian), 38 (1999), N 5, 549–584.
  • Semi-invariants of quivers as determinants (in cooperation with M. Domokos), Transformation Groups, 6, N 1(2001), 9–24.
  • The Razmyslov-Procesi theorem for quivers (in Russian), Fundam. Prikl. Mat. 7 (2001), N 2, 387–421.
  • Invariants of mixed representations of quivers I, Algebra and its Applications, 4 (2005), N 3, 245–285.
  • Invariants of mixed representations of quivers II: defining relations and applications, Algebra and its Applications, 4 (2005), N 3, 287–312.
  • Schur superalgebras in characteristic $p$, II, (in cooperation with F. Marko), Bulletin of London Math. Soc., 38 (2006), 99–112.
  • On some properties of general linear supergroups and Schur superalgebras, Algebra and Logic (Algebra i Logika, russian), 45 (2006), N 3, 257–299.
  • Semi-invariants of mixed representations of quivers, (in cooperation with A. A. Lopatin), Transformation Groups, 12 (2007), N 2, 341–369.
  • Affine quotients of supergroups. Transform. Groups 14 (2009), no. 3, 713–745.

https://www.mathnet.ru/eng/person19345
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/198497
https://elibrary.ru/author_items.asp?spin=1488-6638
https://orcid.org/0000-0002-4528-9368
https://www.webofscience.com/wos/author/record/P-7199-2015
https://www.scopus.com/authid/detail.url?authorId=56283555300

List of scientific publications:
| scientific publications | by years | by types | by times cited | common list |


Citations (Crossref Cited-By Service + Math-Net.Ru)

   2018
1. A. N. Zubkov, “Some properties of Noetherian superschemes”, Algebra and Logic, 57:2 (2018), 130–140  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus

   2014
2. A. N. Zubkov, P. A. Ulyashev, “Solvable and unipotent supergroups”, Algebra and Logic, 53:3 (2014), 206–216  mathnet  crossref  mathscinet  zmath  isi  elib  scopus

   2009
3. V. V. Antonov, A. N. Zubkov, “Coinvariants for a coadjoint action of quantum matrices”, Algebra and Logic, 48:4 (2009), 239–249  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
4. Zubkov, A.N., “Affine Quotients of Supergroups”, Transformation Groups, 48:4 (2009), 239–249  crossref  mathscinet  zmath  scopus 26

   2006
5. A. N. Zubkov, “Some Properties of General Linear Supergroups and of Schur Superalgebras”, Algebra and Logic, 45:3 (2006), 147–171  mathnet  crossref  mathscinet  zmath  elib  scopus

   2005
6. A. N. Zubkov, “Borel Subalgebras of Schur Superalgebras”, Algebra and Logic, 44:3 (2005), 168–184  mathnet  crossref  mathscinet  zmath  elib  scopus

   2002
7. Domokos, M., Zubkov, A.N., “Semisimple representations of quivers in characteristic p”, Algebras and Representation Theory, 5:3 (2002), 305-317  crossref  mathscinet  zmath  scopus 8

   2001
8. A. N. Zubkov, “The Procesi–Razmyslov theorem for quiver representations”, Fundam. Prikl. Mat., 7:2 (2001), 387–421  mathnet  mathscinet  zmath

   1999
9. A. N. Zubkov, Algebra Logika, 38:5 (1999), 549–584  mathnet  mathscinet

   1998
10. A. N. Zubkov, “On a matrix representation of a free group”, Math. Notes, 64:6 (1998), 745–752  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus

   1997
11. A. N. Zubkov, A. S. Shtern, “On a conjecture of O. I. Tavgen'”, Siberian Math. J., 38:1 (1997), 78–83  mathnet  crossref  mathscinet  zmath  isi

   1996
12. Zubkov, A.N., “A generalization of the Razmyslov-Procesi theorem”, Algebra and Logic, 35:4 (1996), 241-254  mathnet  crossref  mathscinet  zmath  scopus 46
13. A. N. Zubkov, Algebra Logika, 35:4 (1996), 433–457  mathnet

   1993
14. A. N. Zubkov, “Matrix invariants over an infinite field of finite characteristic”, Siberian Math. J., 34:6 (1993), 1059–1065  mathnet  crossref  mathscinet  zmath  isi  scopus

   1992
15. A. N. Zubkov, “Varieties of metabelian pro-$p$-groups”, Siberian Math. J., 33:5 (1992), 816–825  mathnet  crossref  mathscinet  zmath  isi  scopus

   1990
16. A. N. Zubkov, Algebra Logika, 29:4 (1990), 430–451  mathnet  mathscinet

   1988
17. A. N. Zubkov, “The lattice of subvarieties of pro-$p$-groups has the power of the continuum”, Siberian Math. J., 29:3 (1988), 491–494  mathnet  crossref  mathscinet  zmath  isi  scopus

   1987
18. A. N. Zubkov, “Nonrepresentability of a free nonabelian pro-p -group by second-order matrices”, Siberian Math. J., 28:5 (1987), 742–747  mathnet  crossref  mathscinet  mathscinet  zmath  isi  scopus

Presentations in Math-Net.Ru
1. Векторные инварианты некоторых простых исключительных групп над полем положительной характеристики
A. N. Zubkov
VI Workshop and Conference on Lie Algebras, Algebraic Groups, and Invariant Theory
February 1, 2017 15:00
2. Новые проблемы алгебры и логики. Юбилейное 900-е заседание семинара
V. N. Remeslennikov, A. N. Rybalov, A. N. Shevlyakov, D. V. Solomatin, L. M. Martynov, G. A. Noskov, A. V. Treyer, A. N. Zubkov, V. P. Il'ev, V. M. Gichev
Omsk Algebraic Seminar
November 12, 2015 16:00
3. The Borel-Bott-Weil theorem for general linear supergroup over field of arbitrary characteristic
A. N. Zubkov
Omsk Algebraic Seminar
December 27, 2012 16:00

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024