|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
I. D. Kan, “Reachability of inequalities from Lame's theorem”, Dal'nevost. Mat. Zh., 24:1 (2024), 45–54 |
|
2023 |
2. |
I. D. Kan, “Modular Generalization of the Bourgain–Kontorovich Theorem”, Mat. Zametki, 114:5 (2023), 739–752 ; Math. Notes, 114:5 (2023), 785–796 |
3. |
I. D. Kan, G. Kh. Solov'ev, “System of Inequalities in Continued Fractions from Finite Alphabets”, Mat. Zametki, 113:2 (2023), 197–206 ; Math. Notes, 113:2 (2023), 212–219 |
|
2022 |
4. |
I. D. Kan, “Strengthening of the Burgein–Kontorovich theorem on small values of Hausdorff dimension”, Funktsional. Anal. i Prilozhen., 56:1 (2022), 66–80 ; Funct. Anal. Appl., 56:1 (2022), 48–60 |
4
|
5. |
I. D. Kan, V. A. Odnorob, “Linear Inhomogeneous Congruences in Continued Fractions on Finite Alphabets”, Mat. Zametki, 112:3 (2022), 412–425 ; Math. Notes, 112:3 (2022), 424–435 |
1
|
|
2021 |
6. |
D. R. Gaifulin, I. D. Kan, “The derivative of the Minkowski function”, Izv. RAN. Ser. Mat., 85:4 (2021), 5–52 ; Izv. Math., 85:4 (2021), 621–665 |
4
|
7. |
I. D. Kan, V. A. Odnorob, “Inversions of Hölder's Inequality”, Mat. Zametki, 110:5 (2021), 704–714 ; Math. Notes, 110:5 (2021), 700–708 |
8. |
D. R. Gayfulin, I. D. Kan, “Stationary points of the Minkowski function”, Mat. Sb., 212:10 (2021), 3–15 ; Sb. Math., 212:10 (2021), 1347–1359 |
2
|
9. |
I. D. Kan, “A strengthening of the Bourgain-Kontorovich method: three new theorems”, Mat. Sb., 212:7 (2021), 39–83 ; Sb. Math., 212:7 (2021), 921–964 |
6
|
|
2020 |
10. |
I. D. Kan, “A strengthening the one of a theorem of Bourgain – Kontorovich”, Dal'nevost. Mat. Zh., 20:2 (2020), 164–190 |
5
|
|
2019 |
11. |
I. D. Kan, “Differentiability of the Minkowski function $?(x)$. II”, Izv. RAN. Ser. Mat., 83:5 (2019), 53–87 ; Izv. Math., 83:5 (2019), 957–989 |
3
|
12. |
I. D. Kan, “Differentiability of the Minkowski $?(x)$-function. III”, Mat. Sb., 210:8 (2019), 87–119 ; Sb. Math., 210:8 (2019), 1148–1178 |
4
|
13. |
I. D. Kan, “Is Zaremba's conjecture true?”, Mat. Sb., 210:3 (2019), 75–130 ; Sb. Math., 210:3 (2019), 364–416 |
8
|
|
2018 |
14. |
I. D. Kan, “Linear Congruences in Continued Fractions on Finite Alphabets”, Mat. Zametki, 103:6 (2018), 853–862 ; Math. Notes, 103:6 (2018), 911–918 |
4
|
|
2017 |
15. |
I. D. Kan, “A strengthening of a theorem of Bourgain and Kontorovich. V”, Trudy Mat. Inst. Steklova, 296 (2017), 133–139 ; Proc. Steklov Inst. Math., 296 (2017), 125–131 |
10
|
|
2016 |
16. |
I. D. Kan, “A strengthening of a theorem of Bourgain and Kontorovich. IV”, Izv. RAN. Ser. Mat., 80:6 (2016), 103–126 ; Izv. Math., 80:6 (2016), 1094–1117 |
13
|
17. |
I. D. Kan, “Inversion of the Cauchy–Bunyakovskii–Schwarz Inequality”, Mat. Zametki, 99:3 (2016), 361–365 ; Math. Notes, 99:3 (2016), 378–381 |
4
|
|
2015 |
18. |
I. D. Kan, “A strengthening of a theorem of Bourgain and Kontorovich. III”, Izv. RAN. Ser. Mat., 79:2 (2015), 77–100 ; Izv. Math., 79:2 (2015), 288–310 |
12
|
|
2014 |
19. |
I. D. Kan, D. A. Frolenkov, “A strengthening of a theorem of Bourgain and Kontorovich”, Izv. RAN. Ser. Mat., 78:2 (2014), 87–144 ; Izv. Math., 78:2 (2014), 293–353 |
16
|
20. |
D. A. Frolenkov, I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich II”, Moscow J. Combin. Number Theory, 4:1 (2014), 78–117 |
|
2011 |
21. |
I. D. Kan, N. A. Krotkova, “Quantitative generalizations of Niederreiter's results on continued fractions”, Chebyshevskii Sb., 12:1 (2011), 100–119 |
|
2010 |
22. |
I. D. Kan, “Methods for estimating of continuants”, Fundam. Prikl. Mat., 16:6 (2010), 95–108 ; J. Math. Sci., 182:4 (2012), 508–517 |
9
|
|
2001 |
23. |
I. D. Kan, “The Frobenius Problem for Classes of Polynomial Solvability”, Mat. Zametki, 70:6 (2001), 845–853 ; Math. Notes, 70:6 (2001), 771–778 |
1
|
|
2000 |
24. |
I. D. Kan, “Refining of the comparison rule for continuants”, Diskr. Mat., 12:3 (2000), 72–75 ; Discrete Math. Appl., 10:5 (2000), 477–480 |
7
|
25. |
I. D. Kan, “Representation of numbers by linear forms”, Mat. Zametki, 68:2 (2000), 210–216 ; Math. Notes, 68:2 (2000), 185–190 |
3
|
|
1997 |
26. |
I. D. Kan, “On a problem of Frobenius”, Fundam. Prikl. Mat., 3:3 (1997), 821–835 |
5
|
27. |
I. D. Kan, B. S. Stechkin, I. V. Sharkov, “Frobenius problem for three arguments”, Mat. Zametki, 62:4 (1997), 626–629 ; Math. Notes, 62:4 (1997), 521–523 |
4
|
|
1993 |
28. |
I. D. Kan, “On an embedding theorem for Möbius functions”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 3, 82–84 |
|
1991 |
29. |
I. D. Kan, “Möbius functions of the union of partial orders”, Diskr. Mat., 3:2 (1991), 121–127 |
|
Presentations in Math-Net.Ru |
|
|
Organisations |
|
|
|
|