Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Timofeeva, Nadezda Vladimirovna

Associate professor
Doctor of physico-mathematical sciences (2016)
E-mail:

https://www.mathnet.ru/eng/person18256
List of publications on Google Scholar

Publications in Math-Net.Ru Citations
2022
1. N. V. Timofeeva, “Stability and equivalence of admissible pairs of arbitrary dimension for a compactification of the moduli space of stable vector bundles”, TMF, 212:1 (2022),  109–128  mathnet  mathscinet; Theoret. and Math. Phys., 212:1 (2022), 984–1000  scopus
2021
2. N. V. Timofeeva, “Locally Free Resolution of Coherent Sheaves in Arbitrary Dimension”, Mat. Zametki, 110:4 (2021),  635–640  mathnet  elib; Math. Notes, 110:4 (2021), 632–637  isi  scopus
2019
3. N. V. Timofeeva, “Admissible pairs vs Gieseker-Maruyama”, Mat. Sb., 210:5 (2019),  109–134  mathnet  mathscinet  zmath  elib; Sb. Math., 210:5 (2019), 731–755  isi  scopus 2
2016
4. N. V. Timofeeva, “Fibred product of commutative algebras: generators and relations”, Model. Anal. Inform. Sist., 23:5 (2016),  620–634  mathnet  mathscinet  elib
2015
5. N. V. Timofeeva, “Isomorphism of compactifications of vector bundles moduli: nonreduced moduli”, Model. Anal. Inform. Sist., 22:5 (2015),  629–647  mathnet  mathscinet  elib 1
6. N. V. Timofeeva, “On a morphism of compactifications of moduli scheme of vector bundles”, Sib. Èlektron. Mat. Izv., 12 (2015),  577–591  mathnet 3
2014
7. N. V. Timofeeva, “Infinitesimal criterion for flatness of projective morphism of schemes”, Algebra i Analiz, 26:1 (2014),  185–195  mathnet  mathscinet  elib; St. Petersburg Math. J., 26:1 (2015), 131–138  isi  scopus 2
2013
8. N. V. Timofeeva, “On a new compactification of moduli of vector bundles on a surface. V: Existence of a universal family”, Mat. Sb., 204:3 (2013),  107–134  mathnet  mathscinet  zmath  elib; Sb. Math., 204:3 (2013), 411–437  isi  scopus 3
9. N. V. Timofeeva, “On a new compactification of moduli of vector bundles on a surface. IV: Nonreduced moduli”, Mat. Sb., 204:1 (2013),  139–160  mathnet  mathscinet  zmath  elib; Sb. Math., 204:1 (2013), 133–153  isi  scopus 4
2012
10. N. V. Timofeeva, “On an isomorphism of compactifications of moduli scheme of vector bundles”, Model. Anal. Inform. Sist., 19:1 (2012),  37–50  mathnet 1
2011
11. N. V. Timofeeva, “On Degeneration of the Surface in the Fitting Compactification of Moduli of Stable Vector Bundles”, Mat. Zametki, 90:1 (2011),  143–150  mathnet  mathscinet; Math. Notes, 90:1 (2011), 142–148  isi  scopus 10
12. N. V. Timofeeva, “On a new compactification of moduli of vector bundles on a surface. III: Functorial approach”, Mat. Sb., 202:3 (2011),  107–160  mathnet  mathscinet  zmath  elib; Sb. Math., 202:3 (2011), 413–465  isi  scopus 11
2009
13. N. V. Timofeeva, “On the new compactification of moduli of vector bundles on a surface. II”, Mat. Sb., 200:3 (2009),  95–118  mathnet  mathscinet  zmath  elib; Sb. Math., 200:3 (2009), 405–427  isi  scopus 13
2008
14. N. V. Timofeeva, “On a new compactification of the moduli of vector bundles on a surface”, Mat. Sb., 199:7 (2008),  103–122  mathnet  mathscinet  elib; Sb. Math., 199:7 (2008), 1051–1070  isi  elib  scopus 14
2007
15. N. V. Timofeeva, “A Compactification of the Moduli Variety of Stable Vector 2-Bundles on a Surface in the Hilbert Scheme”, Mat. Zametki, 82:5 (2007),  756–769  mathnet  mathscinet  zmath  elib; Math. Notes, 82:5 (2007), 677–690  isi  scopus 12
2003
16. N. V. Timofeeva, “Varieties of Complete Pairs of Zero-Dimensional Subschemes of Lengths $\ge2$ and $\ge4$ in Algebraic Surfaces”, Mat. Zametki, 73:5 (2003),  743–752  mathnet  mathscinet  zmath  elib; Math. Notes, 73:5 (2003), 697–705  isi  scopus
17. N. V. Timofeeva, “The variety of complete pairs of zero-dimensional subschemes of length 2 of a smooth three-dimensional variety is singular”, Mat. Sb., 194:3 (2003),  53–60  mathnet  mathscinet  zmath; Sb. Math., 194:3 (2003), 361–368  isi  scopus
2001
18. N. V. Timofeeva, “Determinantal Resolution of the Universal Subscheme in $\mathscr S\times H_{d+1}$”, Mat. Zametki, 69:2 (2001),  286–294  mathnet  mathscinet  zmath  elib; Math. Notes, 69:2 (2001), 253–261  isi
2000
19. N. V. Timofeeva, “Smoothness and Euler characteristic of the variety of complete pairs $X_{23}$ of zero-dimensional subschemes of length 2 and 3 of algebraic surfaces”, Mat. Zametki, 67:2 (2000),  276–287  mathnet  mathscinet  zmath  elib; Math. Notes, 67:2 (2000), 223–232  isi 3
20. N. V. Timofeeva, “The homology groups of the variety of complete pairs $X_{13}$ of zero-dimensional subschemes of lengths 1 and 3 of projective space”, Mat. Sb., 191:11 (2000),  105–116  mathnet  mathscinet  zmath; Sb. Math., 191:11 (2000), 1693–1705  isi  scopus

Presentations in Math-Net.Ru
1. Компактификации схем модулей стабильных векторных расслоений на поверхности локально свободными пучками
N. V. Timofeeva
Shafarevich Seminar
May 14, 2013 15:00
2. On Giseker-Maruyama moduli for a surface: new interpretation of classical scheme
Nadezhda Timofeeva
Instantons in complex geometry
March 18, 2011 11:50   
3. Компактификация схемы модулей стабильных векторных расслоений на поверхности локально свободными пучками
N. V. Timofeeva
Seminar by Algebra Department
June 24, 2008 15:00

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024