Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Kossovski, Nikolai Kirillovich
(1945–2020)

Professor
Doctor of physico-mathematical sciences (1988)
Speciality: 01.01.09 (Discrete mathematics and mathematical cybernetics)
Birth date: 14.04.1945
Website: https://www.math.spbu.ru/user/kos/kos/html
Keywords: computational complexity; lower bounds of complexity; program logic; discrete mathematics; heuristics in problem solving; nonclassical logic.

Subject:

A simple diophantine representation of solution sequence of Pell's equation was recieved (later a similar representation was recieved by M. Davis). A variant of foundation of constructive theory of probability was developed (as a base of Ph.D. thesis). For any natural k an example of NP-complete problem which cannot have a nondeterministic Turing Machine algorithm with polynomial of degree k upper time bound was proposed. The example consists in the problem of the existense of short (the length is not more than a polynomial of degree 2k+1) solutions of bit strings equations. Impossibility of a polynomial decision algorithm for solvability of boolean functional equations was prooved. A polynomial in time algorithm of solution search of a system of strict and nonstrict linear inequalities with integer coefficients was proposed. A number of papers (with A. V. Tishkov) were devoted to a sequent calculus for mixed many-valued Post and Lukacievich logic. It was proved that a problem of solvability of propositional fragment of this calculus belongs to EXP-LIN-TIME (as a proper subclass of EXP-TIME). The problem of satisfiability of a propositional formula of this calculus is NP-complete. Algorithmical undecidability of the universal theory of the ring of binary-rational numbers and decidability of the universal positive theory of nonstrict inequalities of both ring of rational numbers and ring of binary-rational numbers were proved. It was proved that the problem of solvability in real numbers of a strict polynomial inequality with integer coefficients belongs to NP. For every constant modulo the PSPACE-completeness of the problem of decidability of the elementary theory of comparisons this modulo was proved.

Biography

Graduated from Faculty of Mathematics and Mechanics of Leningrad State University (LSU, now SPbSU) in 1966 (speciality of mathematical logic). Ph.D. thesis was defended in 1970. D.Sci. thesis was defended in 1988 at M.V.Lomonosov Moscow State University (MSU). A list of my works contains more than 150 titles. In 1994 I was Adviser of Sy.Petersburg team in the Eastern European Regional Contest of 19th Annual International Collegiate Programming Contest of ACM (Romania).

In 1963 I was a winner of mathematical student tournament between Leningrad and Moscow state universities. In 1985 -- recieved a gratitude of the rector of Leningrad state university for education of Universities' prpfessors in computer science. In 1988 -- awarded by honorable credentials of Ministry of University Education of Russia for the book "Base of elementary algorithm theory",Leningrad, LSU, 1987. 152p. In 1999 -- awarded by honorable credentials of rector of St.Petersburg State University for scientific and educational activity. In 2001 -- awarded by sign of honorable educationalist for educational activities by Ministry of Russia education.

   
Main publications:
  • Kossovski N. Sequentcalculus for generalization of Getmanova's logic to the predicates. // The Bulletin of Symbolic Logic. V. 1, no. 2, June 1995. P. 245.
  • Beauquier D., Kossovski N., Smirnova E. An algorithm for solvsbility testing of elementary linear inequalities systems // Abstracts of the 6th IMACS International IMACS Conference on Applications of Computer Algebra. St. Petersburg, 2000. P. 59–61.
  • Kossovski N. The consistency checking of strict polynomial inequalities // Proc. Intern. Workshop on Logic and Complexity in Computer Science, University Paris 12, Creteil, France, 2001, p. 149–152.

https://www.mathnet.ru/eng/person17980
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/204858
https://elibrary.ru/author_items.asp?authorid=6049

Publications in Math-Net.Ru Citations
2012
1. N. K. Kosovskiy, “Polynomial upper bounds of RAM+BOOL program size of changes for the proof of belonging to FP”, Zap. Nauchn. Sem. POMI, 407 (2012),  105–110  mathnet  mathscinet; J. Math. Sci. (N. Y.), 199:1 (2014), 53–55  scopus
1997
2. N. K. Kossovski, A. V. Tishkov, “Gradable logical values for knowlege representation”, Zap. Nauchn. Sem. POMI, 241 (1997),  135–149  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 98:4 (2000), 500–507
1995
3. N. K. Kossovski, “Level logics”, Zap. Nauchn. Sem. POMI, 220 (1995),  72–82  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 87:1 (1997), 3221–3227 1
1979
4. N. K. Kossovski, “On decision procedures for invariant properties of short algorithms”, Zap. Nauchn. Sem. LOMI, 88 (1979),  73–77  mathnet  mathscinet  zmath; J. Soviet Math., 20:4 (1982), 2304–2307
1976
5. N. K. Kossovski, “On constructive distribution functions”, Zap. Nauchn. Sem. LOMI, 60 (1976),  59–64  mathnet  mathscinet  zmath; J. Soviet Math., 14:5 (1980), 1464–1468
1975
6. N. K. Kossovski, “On the expressive power of the operations of bounded summation and bounded multiplication”, Zap. Nauchn. Sem. LOMI, 49 (1975),  3–6  mathnet  mathscinet  zmath 1
1974
7. N. K. Kossovski, “On solutions of systems consisting both of word equationa and of word length inequalities”, Zap. Nauchn. Sem. LOMI, 40 (1974),  24–29  mathnet  mathscinet  zmath 1
1973
8. N. K. Kossovski, “Constructive variants of the laws of large numbers”, Trudy Mat. Inst. Steklov., 129 (1973),  3–23  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 129 (1973), 1–19
1972
9. N. K. Kossovski, “On recognizing invariant properties of algorithms”, Zap. Nauchn. Sem. LOMI, 32 (1972),  29–34  mathnet  mathscinet
10. N. K. Kossovski, “Some properties of solutions of equations in a free semigroup”, Zap. Nauchn. Sem. LOMI, 32 (1972),  21–28  mathnet  mathscinet 4
1971
11. N. K. Kossovski, “On algorithmical sequences belonging to the initial class of Grzegorczyk hierarchy”, Zap. Nauchn. Sem. LOMI, 20 (1971),  60–66  mathnet  mathscinet  zmath
12. N. K. Kossovski, “On Diophantine representations of the sequence of solutions of Pell's equation”, Zap. Nauchn. Sem. LOMI, 20 (1971),  49–59  mathnet  mathscinet  zmath 2
1970
13. N. K. Kossovski, “Certain questions of the constructive theory of normed Boolean algebras”, Trudy Mat. Inst. Steklov., 113 (1970),  3–38  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 113 (1970), 1–41 1
1969
14. N. K. Kossovski, “The laws of large numbers in constructive probability theory”, Zap. Nauchn. Sem. LOMI, 16 (1969),  105–113  mathnet  mathscinet  zmath
15. N. K. Kossovski, “Intergrable $FR$-constructs over a probability space”, Zap. Nauchn. Sem. LOMI, 16 (1969),  97–104  mathnet  mathscinet  zmath
16. N. K. Kossovski, “Nesessary and sufficient conditions for a probability space to have Specker properties”, Zap. Nauchn. Sem. LOMI, 16 (1969),  91–96  mathnet  mathscinet  zmath
1968
17. N. K. Kossovski, “A construction of basic operators of the combination theory of $K$-algorithms, using operators of a simple kind”, Zap. Nauchn. Sem. LOMI, 8 (1968),  80–94  mathnet  mathscinet  zmath
18. N. K. Kossovski, “On a system of operators, simplifying the combination theory of $K$-algorithms”, Zap. Nauchn. Sem. LOMI, 8 (1968),  66–79  mathnet  mathscinet  zmath
1967
19. N. K. Kossovski, “Sufficient conditions for incompleteness of formalized parts of arithmetic”, Zap. Nauchn. Sem. LOMI, 4 (1967),  44–57  mathnet  mathscinet  zmath

2013
20. M. A. Vsemirnov, È. A. Hirsch, D. Yu. Grigor'ev, G. V. Davydov, E. Ya. Dantsin, I. D. Zaslavskii, È. F. Karavaev, B. Yu. Konev, N. K. Kossovskii, V. A. Lifschitz, M. Margenstern, Yu. V. Matiyasevich, G. E. Mints, V. P. Orevkov, R. Pliuškevičius, A. O. Slisenko, S. V. Solov'ev, V. P. Chernov, “Nikolai Aleksandrovich Shanin (obituary)”, Uspekhi Mat. Nauk, 68:4(412) (2013),  173–176  mathnet  mathscinet  elib; Russian Math. Surveys, 68:4 (2013), 763–767  isi  elib  scopus

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024