01.01.06 (Mathematical logic, algebra, and number theory)
E-mail:
, ,
Keywords:
rings of continuous functions; topological spaces; functional representations of rings; ideals, congruencies and subalgebras in semirings of continuous functions; theory of semirings.
Subject:
Elementary properties of divisibility in rings of continuous functions with values in disconnected normed field were studied. The general theory of rings of continuous functions, connected with their maximal spectrum, was developed. It was applied for research of properties of ideals in rings and semirings of continuous functions. The problem of structural isomorphism of rings of continuous functions was solved. The theory of Abelian-regular positive semirings was constructed.
Biography
Graduated from Faculty of Mathematics of Kirov State Pedagogical Institute in 1974. Ph. D. thesis was defended in 1979. D. Sci. thesis was defended in 1994. A list of my works contains 170 titles. Since 1994 I has led the scientific seminar on functional algebra at Vyatka State Humanities University.
Member-correspondent of Russian Academy Natural Sciences. Soros professor in 1998–2001.
Main publications:
Vechtomov E. M. Rings of continuous functions with values in a topological field // J. Math. Sciences. 1996, 78(6), 702–753.
E.M. Vechtomov, A. A. Petrov, “Multiplicatively idempotent semirings with annihilator condition”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 3, 29–40
2.
E.M. Vechtomov, V. V. Chermnykh, “Lambek functional representation of generalized symmetric semirings”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 2, 26–35; Russian Math. (Iz. VUZ), 67:2 (2023), 23–31
3.
V. I. Varankina, E.M. Vechtomov, “Semigroups of Relatively Continuous Binary Relations
and Their Isomorphisms”, Mat. Zametki, 113:6 (2023), 807–819; Math. Notes, 113:6 (2023), 760–769
4.
E.M. Vechtomov, E. N. Lubyagina, “Semirings of continuous partial numerical functions with extended addition”, Trudy Inst. Mat. i Mekh. UrO RAN, 29:1 (2023), 56–66
2022
5.
E. M. Vechtomov, E. N. Lubyagina, “Subalgebras in semirings of continuous partial real-valued functions”, Fundam. Prikl. Mat., 24:1 (2022), 125–140; J. Math. Sci., 269:5 (2023), 697–707
6.
E. M. Vechtomov, A. A. Petrov, “Multiplicatively Idempotent Semirings in which All Congruences Are Ideal”, Mat. Zametki, 112:3 (2022), 376–383; Math. Notes, 112:3 (2022), 382–387
E. M. Vechtomov, A. A. Petrov, “Completely Prime Ideals in Multiplicatively Idempotent Semirings”, Mat. Zametki, 111:4 (2022), 494–505; Math. Notes, 111:4 (2022), 515–524
E. M. Vechtomov, D. V. Chuprakov, “Finite cyclic semirings with semilattice additive operation defined by two-generated ideal of natural numbers”, Chebyshevskii Sb., 21:1 (2020), 82–100
2016
9.
E. M. Vechtomov, A. A. Petrov, “Pseudocomplements in the lattice of subvarieties of a variety of multiplicatively idempotent semirings”, Fundam. Prikl. Mat., 21:3 (2016), 107–120; J. Math. Sci., 237:3 (2019), 410–419
10.
E. M. Vechtomov, A. V. Mikhalev, V. V. Sidorov, “Semirings of continuous functions”, Fundam. Prikl. Mat., 21:2 (2016), 53–131; J. Math. Sci., 237:2 (2019), 191–244
E. M. Vechtomov, N. V. Shalaginova, “Semirings of continuous $(0,\infty]$-valued functions”, Fundam. Prikl. Mat., 20:6 (2015), 43–64; J. Math. Sci., 233:1 (2018), 28–41
E. M. Vechtomov, I. V. Orlova, “Cyclic semirings with nonidempotent noncommutative addition”, Fundam. Prikl. Mat., 20:6 (2015), 17–41; J. Math. Sci., 233:1 (2018), 10–27
E. M. Vechtomov, V. V. Sidorov, “Definability of Hewitt spaces by the lattices of subalgebras of semifields of continuous positive functions with max-plus”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015), 78–88
E. M. Vechtomov, A. A. Petrov, “Variety of semirings generated by two-element semirings with commutative idempotent multiplication”, Chebyshevskii Sb., 15:3 (2014), 12–30
E. M. Vechtomov, E. N. Lubyagina, “Closed ideals and closed congruences of semirings of $[0,1]$-valued functions with topology of pointwise convergence”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013), 83–93
E. M. Vechtomov, E. N. Lubyagina, “The semiring of continous $[0,1]$-valued functions”, Fundam. Prikl. Mat., 17:4 (2012), 53–82; J. Math. Sci., 191:5 (2013), 633–653
E. M. Vechtomov, I. V. Lubyagina, “Cyclic semirings with idempotent noncommutative addition”, Fundam. Prikl. Mat., 17:1 (2012), 33–52; J. Math. Sci., 185:3 (2012), 367–380
E. M. Vechtomov, E. N. Lubyagina, “The determinability of compacts by lattices of ideals and congruencies of semirings of continuous $[0,1]$-valued functions on them”, Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 1, 87–91; Russian Math. (Iz. VUZ), 56:1 (2012), 79–82
E. M. Vechtomov, E. N. Lubiagina, “About prime ideals in semirings of continuous function with values in unit segment”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 2, 12–18
E. M. Vechtomov, V. V. Sidorov, “Isomorphisms of lattices of subalgebras of semirings of continuous nonnegative functions”, Fundam. Prikl. Mat., 16:3 (2010), 63–103; J. Math. Sci., 177:6 (2011), 817–846
E. M. Vechtomov, D. V. Chuprakov, “Extension of Congruences on Semirings of Continuous Functions”, Mat. Zametki, 85:6 (2009), 803–816; Math. Notes, 85:6 (2009), 767–779
E. M. Vechtomov, D. V. Chuprakov, “The principal kernels of semifields of continuous positive functions”, Fundam. Prikl. Mat., 14:4 (2008), 87–107; J. Math. Sci., 163:5 (2009), 500–514
E. M. Vechtomov, M. A. Lukin, “Semirings which are the unions of a ring and a semifield”, Uspekhi Mat. Nauk, 63:6(384) (2008), 159–160; Russian Math. Surveys, 63:6 (2008), 1152–1153
E. M. Vechtomov, A. V. Cheraneva, “On the theory of semidivision rings”, Uspekhi Mat. Nauk, 63:2(380) (2008), 161–162; Russian Math. Surveys, 63:2 (2008), 391–393
E. M. Vechtomov, O. V. Starostina, “Structure of abelian regular positive semirings”, Uspekhi Mat. Nauk, 62:1(373) (2007), 199–200; Russian Math. Surveys, 62:1 (2007), 199–201
V. I. Varankina, E. M. Vechtomov, I. A. Semenova, “Semirings of continuous nonnegative functions: divisibility, ideals, congruences”, Fundam. Prikl. Mat., 4:2 (1998), 493–510
E. M. Vechtomov, “Lattice of subalgebras of the ring of continuous functions and Hewitt spaces”, Mat. Zametki, 62:5 (1997), 687–693; Math. Notes, 62:5 (1997), 575–580
E. M. Vechtomov, “Divisibility in the rings $C(X,F)$ of continuous functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 1, 7–16; Russian Math. (Iz. VUZ), 40:1 (1996), 5–14
33.
E. M. Vechtomov, M. N. Smirnova, “A duality for topological semirings of continuous functions”, Uspekhi Mat. Nauk, 51:3(309) (1996), 187–188; Russian Math. Surveys, 51:3 (1996), 571–572
E. M. Vechtomov, “On the general theory of rings of continuous functions”, Uspekhi Mat. Nauk, 49:3(297) (1994), 177–178; Russian Math. Surveys, 49:3 (1994), 202–204
1993
36.
E. M. Vechtomov, “Annihilator characterizations of Boolean rings and Boolean lattices”, Mat. Zametki, 53:2 (1993), 15–24; Math. Notes, 53:2 (1993), 124–129
E. M. Vechtomov, “Rings of continuous functions and sheaves of rings”, Uspekhi Mat. Nauk, 48:5(293) (1993), 167–168; Russian Math. Surveys, 48:5 (1993), 187–188
38.
E. M. Vechtomov, “Rings of continuous functions and the theory of Gel'fand”, Uspekhi Mat. Nauk, 48:1(289) (1993), 163–164; Russian Math. Surveys, 48:1 (1993), 199–200
E. M. Vechtomov, “On the Gel'fand–Kolmogorov theorem on maximal ideals of rings of continuous functions”, Uspekhi Mat. Nauk, 47:5(287) (1992), 171–172; Russian Math. Surveys, 47:5 (1992), 207–208
E. M. Vechtomov, “Rings of continuous functions. Algebraic aspects”, Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 29 (1991), 119–191; J. Math. Sci., 71:2 (1994), 2364–2408
E. M. Vechtomov, “Questions on the determination of topological spaces by algebraic systems of continuous functions”, Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 28 (1990), 3–46; J. Soviet Math., 53:2 (1991), 123–147
E. M. Vechtomov, “On the module of functions with compact support over a ring of continuous functions”, Uspekhi Mat. Nauk, 37:4(226) (1982), 151–152; Russian Math. Surveys, 37:4 (1982), 147–148
1981
46.
E. M. Vechtomov, “Ideals of rings of continuous functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 1, 3–10
E. M. Vechtomov, “Module of all functions over the ring of continuous functions”, Mat. Zametki, 28:4 (1980), 481–490; Math. Notes, 28:4 (1980), 701–705
E. M. Vechtomov, “Isomorphism of the multiplicative semigroups of algebras of continuous functions with compact support”, Uspekhi Mat. Nauk, 33:5(203) (1978), 175–176; Russian Math. Surveys, 33:5 (1978), 213–214
E. M. Vechtomov, “The isomorphism of multiplicative semigroups of rings of continuous functions”, Sibirsk. Mat. Zh., 19:4 (1978), 759–771; Siberian Math. J., 19:4 (1978), 536–545
To the theory of multiplicative cyclic semirings D. V. Chuprakov, E. M. Vechtomov, I. V. Orlova XV International Conference «Algebra, Number Theory and Discrete Geometry: modern problems and applications», dedicated to the centenary of the birth of the Doctor of Physical and Mathematical Sciences, Professor of the Moscow State University Korobov Nikolai Mikhailovich May 29, 2018 15:00