E. A. Zlobina, A. P. Kiselev, “Boundary-layer approach to high-frequency diffraction by a jump of curvature”, Wave Motion, 96 (2020), Article ID 102595
E. A. Zlobina, “Short-Wavelength Diffraction by a Contour with Nonsmooth Curvature. Boundary Layer Approach”, J. Math. Sci., 277 (2023), 586–597
E. A. Zlobina, A. P. Kiselev., “Fresnel-type transition zones”, J. Comm. Tech. El., 68:6 (2023), 639–648
E. A. Zlobina, “Diffraction of large-number whispering gallery mode by boundary straightening with jump of curvature”, arXiv, 2024
E. A. Zlobina, A. P. Kiselev, “The Malyuzhinets—Popov diffraction problem revisited”, Wave Motion, 121 (2023), Article ID 103172
E. A. Zlobina, Diffraction of large-number whispering gallery mode by boundary straightening with jump of curvature, 2024 (Published online) , arXiv: 2408.03824
2.
E. A. Zlobina, N. S. Fedorov, A. P. Kiselev, “Paraxial wave propagation along a delta potential”, Proceedings of the International Conference “Days on Diffraction 2024” (St. Petersburg, 2024), IEEE, 2024, 158–161
E. A. Zlobina, A. P. Kiselev, “Diffraction of a Whispering Gallery Mode at a Jumply Straightening of the Boundary”, Acoustical Physics, 69:2 (2023), 133–142rdcu.be/dctrm
5.
E. A. Zlobina, “Approximation of Mathieu Functions by Parabolic Cylinder Functions”, Math. Notes, 114:3 (2023), 303–307
6.
E. A. Zlobina, “Diffraction of large-number whispering gallery mode by jump of curvature”, Mathematical problems in the theory of wave propagation. Part 53, Zap. Nauchn. Sem. POMI, 521, POMI, St. Petersburg, 2023, 95–122
7.
E. A. Zlobina, A. P. Kiselev, “Boundary layer approach to diffraction by contours with jumping curvature: a problem with tangential incidence”, Proceedings of the International Conference“Days on Diffraction 2023” (St. Petersburg, 2023), IEEE, 2023, 227–232
8.
E. A. Zlobina, A. P. Kiselev, “The Malyuzhinets—Popov diffraction problem revisited”, Wave Motion, 121 (2023), Article ID 103172
E. A. Zlobina, A. P. Kiselev, “Fresnel-type transition zones”, J. Comm. Tech. Electr., 86:6 (2023), 639–648
2022
10.
A. S. Blagoveshchensky, E. A. Zlobina, A. P. Kiselev, “Two-Dimensional Analogs of the Classical Bateman Wave Are Solutions of Problems with Moving Sources”, Differential Equations, 58:2 (2022), 275–279
11.
E. A. Zlobina, A. P. Kiselev, “Transition Zone in High-Frequency Diffraction on Impedance Contour with Jumping Curvature. Kirchhoff’s Method and Boundary Layer Method”, J. Comm. Tech. Electr., 67:2 (2022), 130–139
12.
E. A. Zlobina, A. P. Kiselev, “Detailed study of the Malyuzhinets—Popov diffraction problem”, Proceedings of the International Conference “Days on Diffraction 2022” (St. Petersburg, 2022), IEEE, 2022, 149–152
E. A. Zlobina, A. P. Kiselev, “SHORT WAVE DIFFRACTION ON A CONTOUR WITH A HÖLDER SINGULARITY OF THE CURVATURE”, St. Petersburg Mathematical Journal, 33:2 (2022), 207–222
2021
14.
E. A. Zlobina, “Diffraction of short waves by a contour with Hölder singularity of curvature. Transition zone”, Mathematical problems in the theory of wave propagation. Part 51, Zap. Nauchn. Sem. POMI, 506, POMI, St. Petersburg, 2021, 43–56
2020
15.
E. A. Zlobina, A. P. Kiselev, “Boundary-layer approach to high-frequency diffraction by a jump of curvature”, Wave Motion, 96 (2020), 102571 (Published online)
E. A. Zlobina, “Short-Wavelength Diffraction by a Contour with Nonsmooth Curvature. Boundary Layer Approach”, J. Math. Sci., 277:4 (2023), 586–597
2020
17.
E. A. Zlobina, “Diffraction by a jump of curvature: Wavefield near the limit ray at a moderate distance”, Proc. Intern. Conf. “Days on Diffraction 2020” (St. Petersburg), IEEE, 2020, 128–130
2021
18.
E. A. Zlobina, A. P. Kiselev, “Two-Dimensional Singular Splash Pulses”, J. Math. Sci., 252:2 (2021), 619–623
2019
19.
E. A. Zlobina, “High-frequency diffraction by a contour with a Hölder discontinuity of curvature”, Proc. Intern. Conf. “Days on Diffraction 2019”, IEEE, 2019, 251–252
20.
E. A. Zlobina, A. P. Kiselev, “High-frequency diffraction by a contour with a jump of curvature. Limit ray”, J. Math. Sci. (N. Y.), 243:5 (2019), 707–714
2018
21.
E. A. Zlobina, A. P. Kiselev, “High-frequency diffraction by a contour with a jump of curvature”, Proc. Intern. Conf. “Days on Diffraction 2018”, IEEE, 2018, 325–328