Full list of publications: |
|
|
Citations (Crossref Cited-By Service + Math-Net.Ru) |
|
|
2023 |
1. |
E. A. Zlobina, A. P. Kiselev, “Diffraction of a Whispering Gallery Mode at a Jumply Straightening of the Boundary”, Acoustical Physics, 69:2 (2023), 133–142 rdcu.be/dctrm |
2. |
E. A. Zlobina, “Approximation of Mathieu Functions by Parabolic Cylinder Functions”, Math. Notes, 114:3 (2023), 303–307 |
3. |
E. A. Zlobina, “Diffraction of large-number whispering gallery mode by jump of curvature”, Mathematical problems in the theory of wave propagation. Part 53, Zap. Nauchn. Sem. POMI, 521, POMI, St. Petersburg, 2023, 95–122 |
4. |
E. A. Zlobina, A. P. Kiselev, “Boundary layer approach to diffraction by contours with jumping curvature: a problem with tangential incidence”, Proceedings of the International Conference“Days on Diffraction 2023” (St. Petersburg, 2023), IEEE, 2023, 227–232 |
5. |
E. A. Zlobina, A. P. Kiselev, “The Malyuzhinets—Popov diffraction problem revisited”, Wave Motion, 121 (2023), Article ID 103172
|
2
[x]
|
6. |
E. A. Zlobina, A. P. Kiselev, “Fresnel-type transition zones”, J. Comm. Tech. Electr., 86:6 (2023), 639–648 |
|
2022 |
7. |
A. S. Blagoveshchensky, E. A. Zlobina, A. P. Kiselev, “Two-Dimensional Analogs of the Classical Bateman Wave Are Solutions of Problems with Moving Sources”, Differential Equations, 58:2 (2022), 275–279 |
8. |
E. A. Zlobina, A. P. Kiselev, “Transition Zone in High-Frequency Diffraction on Impedance Contour with Jumping Curvature. Kirchhoff’s Method and Boundary Layer Method”, J. Comm. Tech. Electr., 67:2 (2022), 130–139 |
9. |
E. A. Zlobina, A. P. Kiselev, “Detailed study of the Malyuzhinets—Popov diffraction problem”, Proceedings of the International Conference “Days on Diffraction 2022” (St. Petersburg, 2022), IEEE, 2022, 149–152
|
1
[x]
|
10. |
E. A. Zlobina, A. P. Kiselev, “SHORT WAVE DIFFRACTION ON A CONTOUR WITH A HÖLDER SINGULARITY OF THE CURVATURE”, St. Petersburg Mathematical Journal, 33:2 (2022), 207–222 |
|
2021 |
11. |
E. A. Zlobina, “Diffraction of short waves by a contour with Hölder singularity of curvature. Transition zone”, Mathematical problems in the theory of wave propagation. Part 51, Zap. Nauchn. Sem. POMI, 506, POMI, St. Petersburg, 2021, 43–56 |
|
2020 |
12. |
E. A. Zlobina, A. P. Kiselev, “Boundary-layer approach to high-frequency diffraction by a jump of curvature”, Wave Motion, 96 (2020), 102571 (Published online)
|
12
[x]
|
|
2023 |
13. |
E. A. Zlobina, “Short-Wavelength Diffraction by a Contour with Nonsmooth Curvature. Boundary Layer Approach”, J. Math. Sci., 277:4 (2023), 586–597 |
|
2020 |
14. |
E. A. Zlobina, “Diffraction by a jump of curvature: Wavefield near the limit ray at a moderate distance”, Proc. Intern. Conf. “Days on Diffraction 2020” (St. Petersburg), IEEE, 2020, 128–130 |
|
2021 |
15. |
E. A. Zlobina, A. P. Kiselev, “Two-Dimensional Singular Splash Pulses”, J. Math. Sci., 252:2 (2021), 619–623 |
|
2019 |
16. |
E. A. Zlobina, “High-frequency diffraction by a contour with a Hölder discontinuity of curvature”, Proc. Intern. Conf. “Days on Diffraction 2019”, IEEE, 2019, 251–252 |
17. |
E. A. Zlobina, A. P. Kiselev, “High-frequency diffraction by a contour with a jump of curvature. Limit ray”, J. Math. Sci. (N. Y.), 243:5 (2019), 707–714 |
|
2018 |
18. |
E. A. Zlobina, A. P. Kiselev, “High-frequency diffraction by a contour with a jump of curvature”, Proc. Intern. Conf. “Days on Diffraction 2018”, IEEE, 2018, 325–328
|
1
[x]
|
|