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Some of the simplest non-linear problems of the
consolidation of a water-saturated earth

medium1

Represented by acad. L. S. Leibenson

Let us consider to begin with the unidimensional problem of the consolida-
tion of a two–phase soil medium. Assuming the material of the soil framework
and the liquid (water) filling the pores to be incompressible we have equations
of continuity for each of the phases:

∂m
∂t + ∂u

∂x = 0, (1)

∂n
∂t + ∂v

∂x = 0, (2)

where m and n are the contents of the liquid and of the solid phase in the unit
of volume of the soil medium and u and v are the velocities of filtration of the
respective phases.

In consequence of the mobility of the soil framework let us assume the Darcy-
Gersanov equation in the form:

u− εv = −k ∂H∂x , (3)

where ε is the coefficient of porosity, k is the filtration coefficient of the liquid,
and H is the hydrodynamic pressure.

Taking into account the known relationships:

m = ε
1+ε and n = 1

1+ε ,

we obtain from equations (1) and (2):

∂
∂x (u+ v) = 0,

from which we have
u = u0 − v, (4)

where u0 is some velocity of filtration of the liquid which is constant for all
points of the medium, and is determined from the conditions of each particular
problem.

1reported at the seminar of Mechanics Institute of AN SSSR in May of 1948
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Then equation (3) may be written in the form:

−u0 + (1 + ε)v = k ∂H∂x . (5)

Differentiating, we find

v ∂ε∂x + (1 + ε) ∂v∂x = k ∂
2H
∂x2 + ∂k

∂x
∂H
∂x . (6)

Let σ and p be the stresses in the soil framework and the pressures of liquid
filling the pores at any given moment of time t, at a point determined by the
coordinate x. Let the external loading of the boundary surface be q and the
external pressure of liquid on that surface be w; let the density of the liquid
be γ that of the material of the soil framework be γc. The thickness of the
consolidated layer of soil let us call h. The axis x is vertically upwards, and
coincident — for definition of the origin of the co-ordinates — with the lower
boundary surface.

From the conditions of equilibrium of a prism bounded by the upper limiting
(boundary) surface, with two vertical planes and at any given distance x from
the origin of the co-ordinates of the lower surface, we have:

q + w + γc(h− x) + ε
1+ε (h− x)γ − σ − p = 0,

or, if the weight of the soil framework suspended in the liquid be γB , we obtain:

q + w + γB(h− x) + γ(h− x)− σ − p = 0. (7)

From this, taking into account the known relationship

H = p
γ + x,

we have
∂σ
∂x = −

(
∂p
∂x + γ + γB

)
= −

(
γ ∂H∂x + γB

)
,

∂σ
∂t = −γ ∂H∂t + dq

dt + dw
dt . (8)

Since ε = ε(σ) and k = k(ε) we obtain:

∂ε
∂x = dε

dσ
∂σ
∂x = − dε

dσ

(
γ ∂H∂x + γB

)
, (9)

∂k
∂x = dk

dε
dε
dσ

∂σ
∂x = −dkdε

dε
dσ

(
γ ∂H∂x + γB

)
. (10)

Using equation (2) we have

∂v
∂x = −∂n∂t = 1

(1+ε)2
∂ε
∂t = 1

(1+ε)2
dε
dσ

(
−γ ∂H∂t + dq

dt + dw
dt

)
. (11)
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Then, taking into account equations (5), (8), (9), (10) and (11), we can write
equation (6) in the following form:

∂H
∂t −

1
γ
d
dt (q + w) +

(
∂H
∂x

)2 [
(k − (1 + ε)dkdε )

]
+

+∂H
∂x

γB
γ

[
k + u0

γ
γB
− (1 + ε)dkdε

]
+ k(1+ε)

γ dεdσ

∂2H
∂x2 + γB

γ u0 = 0 . (12)

If we call the stresses in the soil framework σ∗ and the pressure in the pores
filling with water p∗ for a moment of time t and the co-ordinate x, but only
assuming “momentary” consolidation of the ground during external loading q
and w corresponding to that moment of times then from equation (7) we have
for the state of “momentary consolidations”, equation

q + w + γB(h− x) + γ(h− x)− σ∗ − p∗ = 0 (13)

From (7) and (13) we obtain equation

σ + p = σ∗ + p∗ or σ + γH = σ∗ + γH∗. (14)

Differentiating equation (13) we obtain

1
γ
d
dt (q + w) = 1

γ
∂
∂t (σ

∗ + p∗) = ∂H∗

∂t + 1
γ
∂σ∗

∂t

As a result, in equation (12) we can substitute H∗ and σ∗ for q and w.
Using equations (13) and (14) we can also write equation (12) in the form:

∂σ
∂t −

1
γ

[
k − (1 + ε)dkdε

] (
∂σ
∂x

)2 − γB
γ

[
k + u0

γ
γB
− (1 + ε)dkdε

]
∂σ
∂x+

+k(1+ε)

γ dεdσ

∂2σ
∂x2 = 0 . (15)

Equation (12) like equation (15) has the form

∂H
∂t + α

(
∂H
∂x

)2
+ β ∂H∂x + δ ∂

2H
∂x2 + ∂F

∂t = 0 , (16)

where, conformably with (12)

α = k − (1 + ε)dkdε = −(1 + ε)2 d
dε

k
1+ε ,

β = γB
γ α+ u0 ,

δ = k(1+ε)

γ dεdσ
,

∂F
∂t = − 1

γ
d
dt (q + w) + γB

γ u0 .

Equation (16) is of greater importance for problems of soil
consolidation and for the investigation of unceasing
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filtration in conditions where the soil framework is undergoing deformation. For
the case of a spatial problem the analogical equation has the form:

∂H
∂t + α(gradH)2 + β(gradH, gradψ) + δ∇2H + ∂F

∂t = 0 , (17)

where α, β, δ, ψ and ∂F
∂t are certain given functions from the co-ordinates and

time.
It can be shown without difficulty that, for α

δ = const and assuming

H = δ
α ln (ϕ+ C) +D , (18)

where C and D are arbitrary constants, equation (17) can be reduced to the
linear form:

∂ϕ
∂t + β(gradϕ, gradψ) + δ∇2ϕ+ α

δ (ϕ+ C)∂F∂t = 0 . (19)

If, however, in addition, the function F as, e.g., in the case of the unidimen-
sional problem of consolidation, does not depend on the co-ordinates but only
on time, then, assuming

H = δ
α ln (ϕ+ C)− F +D , (20)

the equation (17) can be reduced to a form such as:

∂ϕ
∂t + β(gradϕ, gradψ) + δ∇2ϕ = 0 . (21)

If in conformity with the usual conditions of the plane or the spatial problem
of consolidation of the earth medium we consider the functions ψ(x, y, z, t) and
F (x, y, z, t) as known and the relation (fractions) α

δ = const and α
β = const

then assuming
H = δ

α ln (ϕ+ C)− β
2αψ +D , (22)

equation (17) can be reduced to the form

∂ϕ
∂t + δ∇2ϕ+ (ϕ+ C)

{
α
β
∂F
∂t −

β2

4δ (gradψ)2 − β
2δ
∂ψ
∂t −

β
2∇

2ψ
}

= 0 ,

where the expression in brackets represents some known function of the co-
ordinates and time, while the function ψ is usually harmonic, in consequence of
which ∇2ψ = 0.

In the particular case where α = const, β = const, δ = const, F = F (t) and
ψ = ax+ by + cz, if we take

H = δ
α ln (ϕ+ C)− F − β

2α (ax+ by + cz) (a2+b2+c2)β2

4α t+D , (23)
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we can reduce equation (17) to its simplest forms

∂ϕ
∂t + δ∇2ϕ = 0.

The particular values C and D in the expressions given above are choosed for
reasons of convenience.

Applying, in accordance with the conditions of the special problem consid-
ered, for substitution of the dependent variable, one of the equations (18), (20),
(22), or (23), we have the following expressions for the functional ϕ:

ϕ+ C = exp
{
α
δ (H −D)

}
,

ϕ+ C = exp
{
α
δ (H + F −D)

}
,

ϕ+ C = exp
{
α
δ (H + β

2αψ −D)
}
,

ϕ+ C = exp
{
α
δ

[
H + β

2α (ax+ by + cz)− (a2+b2+c2)β2

4α t−D
]}
.

(24)

Considering now the unidimensional problem, let us point out that the equation
(16) is the particular case of equation (17).

The initial condition for the unidimensional problem for any of the considered
cases of substitution of the dependent variable may be obtained, the assumption
being made in the corresponding equation of series (24) that ϕ = ϕ0, H = H0

and t = 0.
The boundary conditions in the case of unidimensional problem for perme-

able boundary surfaces are applied, as usual, H = H ′ or H = H ′′ and may be
expressed without difficulty by the function ϕ.

For impermeable boundary surfaces from the condition ∂H
∂x = 0 in conformity

with the equations (18) and (20) we obtain ∂ϕ
∂x = 0 while in conformity with

equation (22) we obtain:
∂ϕ
∂x = β

2δ (ϕ+ c)∂ψ∂x .

(after) The function ϕ having been an determined, the determination of the
function H can take place without difficulty using one of the equations (18),
(20), (22) or (23).

As an example, let us consider the simpler special case, it being assumed
that

u0 = dq
dt = dw

dt = dk
dε = γB = 0 ,

1 + ε = 1 + εcp = const ,

dε
dσ = −a = const, k = const .
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That case corresponds to the usual statement of the problem by Terzaghi
and Gersevanov but without neglecting the term v ∂ε∂x in equation (6).

The equation (16) in this case has the following form:

∂H
∂t + α

(
∂H
∂x

)2
+ δ ∂

2H
∂x2 = 0 ,

where
α = k ,

δ = −k(1+ε)
γa ,

α
δ = − γa

1+εcp
.

Assuming (taking, substituting...)

H = δ
α ln (ϕ+ 1) ,

we find
∂ϕ
∂t + δ ∂

2ϕ
∂x2 = 0.

Assuming the initial and boundary conditions to be:

for t = 0 H = H0 or ϕ = e
α
δH0 − 1

for x = 0 and x = h H = 0 or ϕ = 0 ,

the solution of this problem can be written in the known form:

ϕ = (e
α
δH0 − 1)

4

π

∞∑
i=1,3,...

1
i sin iπx

h exp
{
i2π2δ
h2 t

}
.

From this we obtain

H = δ
α ln [1 + µ(e

α
δH0 − 1)], (25)

where

µ =
4

π

∞∑
i=1,3,...

1
i sin iπx

h exp
{
i2π2δ
h2 t

}
.

We note that 0 6 µ 6 1.
One finds without difficulty that if α tends to zero then this solution takes

the generally known form:
Hα=0 = µH0 . (26)

One finds again without difficulty that for the limiting cases corresponding
to t = 0 and t =∞ the values of µ are, respectively, µ = 1 and µ = 0; hence, we
have, respectively, H = Hα=0 = H0 and H = Hα=0 = 0, i.e., for these limiting
cases the solutions (25) and (26), naturally, coincide.
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For the intervening (intermediate) moments (points) of time 0 < t < ∞
the ratio of the values of the required(desired) functions H and Hα=0 for any
moment of time t and of the co-ordinate x is determined(expressed) by the
expression

r = H
Hα=0

= δ
α

1
µH0

ln [1 + µ(e
α
δH0 − 1)] .

Taking as a numerical example big enough (sufficiently great) values H0 =

30m and a = 0.05 cm
2

kg , and also εcp = 1 and γ = 1 T
m3 , we obtain

α
δ = − γa

1+εcp
= − 1×0.005

2 = −0.0025 1
m

α
δH0 = −0.0025× 30 = −0.075 .

Whence
r = − 1

0.075µ ln [1 + µ(e−0.075 − 1)] .

The values of r for differ-
ent values of µ are given in
Table 1; it follows from this
that these values deviate from

Table 1
µ 0 0.1 0.2 0.4 0.6 0.8 1.0

r 1 0.97 0.97 0.98 0.98 0.99 1

unity by a sufficiently small amount; this illustrates objectively the practical
basis for neglecting in the fundamental equation of consolidation in the ease
considered, the unidimensional problem in equation (6) the terms containing
the factor “velocity of filtration”. Therefore, in considering the plane problem
as well as the spatial problems of consolidating an earth medium, there is a
sufficient reason for the same admission.

As a second example, we give the solution of the unidimensional problem
of consolidation where it is assumed that the filtration properties of the soil
medium vary with the variation of the stresses and the porosity of the soil
framework. Neglecting in accordance with what has been said, the term v ∂ε∂x in
equation (6), and assuming, e.g., u0 = 0 we obtain (conformably with equation
(16))

α = −(1 + ε)dkdε ,

β = γB
γ α ,

δ = k(1+ε)

γ dεdσ
.

Let the symbols for the quantities corresponding to the initial and the final
states of stress have (supply), respectively, the index ′ and ′′. Taking into ac-
count that on the basis of experiment the ratio of the coefficient
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of filtration k to the coefficient of porosity ε may be represented sufficiently
satisfactorily by a linear function, let us assume

k = k′ − k′−k′′
ε′−ε′′ (ε

′ − ε) (27)

If with a wide range of varying porosity, that relationship does not occur, with a
sufficiently small range practically any relationship may be replaced by a linear
function; so, for example, it is assumed in the substitution of the rectilinear for
the curvilinear form of the compression curve. Taking into account that the form
of the compression curve may be represented much better by the exponential
function than by the linear, we assume:

ε = ε′ − ε′−ε′′
k′−k′′

[
k′ − exp

{
− ln k′− ln k′′

σ′′−σ′ σ + σ′′ ln k′−σ′ ln k′′
σ′′−σ′

}]
. (28)

From equations (27) and (28) we can write equation (27) in the form

k = exp{ } . (29)

Differentiating the expression (27) we obtain

dk
dε = k′−k′′

ε′−ε′′ ,

whence
α = −(1 + ε)k

′−k′′
ε′−ε′′ ,

β = −(1 + ε)γBγ
k′−k′′
ε′−ε′′ .

Differentiating the expression (28) and compare the result of this differentiation
with (29) we have

δ = k(1+ε)

γ dεdσ
= − 1+ε

γ
k′−k′′
ε′−ε′′

σ′′−σ′

ln k′
k′′

,

whence
α
δ = γ

ln k′
k′′

σ′′−σ′ = const.

Because of the fact that in the 1D case we have F = F (t) we can reduce
the original equation of consolidation (16) to the form (21) by the substitution
(20).

However, for further simplification of the example let us, as a preliminary,
make the usual assumption which is also assumed even to the problems with a
constant coefficient of filtration, namely that 1 + ε ≈ 1 + εcp.

The influence of that assumption on the results obtained, as has been noted
already by Gersevanov, is rather slight. In consequence of this assumption in
the present case the values α, β and δ become constants.

Let us assume, for the sake of distinctness, that at a moment of time t = 0
to the upper, boundary surface of a soil layer in a stabilised state a load q,
unvarying in time, is momentarily applied and the pressure w in the water.
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Let us assume, for the sake of distinctness, that at a moment of time t = 0
to the upper, boundary surface of a soil layer in a stabilised state a load q,
unvarying in time, is momentarily applied and the pressure w in the water.

Taking into account that in the case considered we have ∂F
∂t = β = 0, and

assuming:
H = δ

α ln (ϕ+ C) +D, (30)

we obtain the equation of consolidation in the following form:

∂ϕ
∂t + δ ∂2

∂x2ϕ = 0.

in accordance with the expression (30) we have

ϕ+ C = exp
{

(H −D)αδ
}

;

from this taking into account the initial condition1 for function H:

with t = 0 and 0 6 x 6 h H = 1
γ (q + w) + h = H0,

we have the initial condition for the function ϕ (with a choice D = 0 and C = 1):

with t = 0 and 0 6 x 6 h ϕ = exp
{
α
δH0

}
− 1 = ϕ0.

The boundary conditions1 for the functions H and ϕ for (at) 0 < t <∞:

for x = 0 H = 0 and ϕ = 0 ,

for x = h H = w
γ + h = Hh and ϕ = exp

{
α
δHh

}
− 1 = ϕh .

The solution of this problem, as we know, can be represented in the following
form:

ϕ = x
hϕh +

∞∑
i=1,2,...

exp
{
i2π2δ
h2 t

}
sin iπx

h
2
h

∫ h

0

(
ϕ0 − x

hϕh
)

sin iπx
h dx =

= x
hϕh +

2

π

∞∑
i=1,2,...

1
i sin iπx

h {ϕh(−1)i − ϕ0[(−1)i − 1]} exp
{
i2π2δ
h2 t

}
.

Whence

H =
δ

α
ln
[
1 + x

h

[
exp
{
α
δHh

}
− 1
]

+
2

π

∞∑
i=1,2,...

1
i sin iπx

h ×

×
{

(−1)i
[
exp
{
α
δHh

}
− 1
]
− [(−1)i − 1]

[
exp
{
α
δH0

}
− 1
]}
×

× exp
{
i2π2δ
h2 t

}]
.

1In cases where the weight of the water in the pores is neglected in the expressions for H0

and Hh, it is necessary to neglect h (to drop(throw off/away) the additive term h) also.

1397



The solution obtained for α = 0 naturally agrees with the usual solution for
constant soil properties.

In the same way the solution for any case of a unidimensional problem can
be obtained, the variability of the soil properties being taken into account, and,
in particular, when taking into account its consolidation under its own weight,
the varying boundary conditions etc.

A similar method of solution may be applied also for the solution of a plane
or a spatial problem of consolidation. It appears to be satisfactory to apply it
in the case of a numerical solution also, e,g., by the method of finite differences.

It was pointed out by us in an earlier paper [1] that in the case of a planar or a
spatial problem of consolidation of the soil medium with the variable properties
of the ground used in the form of a two-phase medium, and where the terms
are neglected in which the filtration velocities occur as factors, the fundamental
equation may be represented in the form

∂H
∂t = 1

2γ
∂θ∗

∂t + ∂H∗

∂t − (1 + ε)dkdε
{

1
2γ (grad θ∗, gradH)+

+(gradH, gradH∗)− (gradH)2
}
− (1+ε)k

2γ dεdθ
∇2H ,

(31)

where θ is the sum of the principal stresses in the soil.
Denoting

ψ = H∗ + 1
2γ θ
∗

and taking into account that

1
2γ (grad θ∗, gradH) + (gradH∗, gradH) = (gradH, gradψ),

we can write equation (31) in the form

∂H
∂t − (1 + ε)dkdε (gradH)2 + (1 + ε)dkdε (gradH, gradψ)+

+
(1 + ε)k

2γ dεdθ
∇2H − ∂ψ

∂t = 0,

or
∂H
∂t + α(gradH)2 + β(gradH, gradψ) + δ∇2H + ∂F

∂t . (32)

Taking into account that the stress σ which occurs in the equation of the com-
pression curve ε = ε(σ) has the following relationship to the principal stresses:
σ = θ

1+ξ , where ξ is the coefficient of lateral pressure, we find:

dε
dθ = dε

dσ
dσ
dθ = 1

1+ξ
dε
dσ .

Then in accordance with what was said earlier with reference to equation
(32) we have:

α = −(1 + ε)dkdε = −(1 + ε)k
′−k′′
ε′−ε′′ ,
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β = (1 + ε)dkdε = (1 + ε)k
′−k′′
ε′−ε′′ ,

δ =
(1 + ε)k

2γ dεdθ
= −(1 + ξ) (1+ε)

2γ
k′−k′′
ε′−ε′′

σ′′−σ′

ln k′
k′′

,

F = −ψ
and consequently

α
δ = 2γ

1+ξ

ln k′

k′′

σ′′ − σ′
= const ,

β
α = −1.

Assuming as usual that, 1 + ε = 1 + εcp, we obtain that not only their ratios
but also the values α, β and δ are themselves constants.

Introducing a new dependent variable defined by the expression

H = δ
α ln (ϕ+ C) + 1

2ψ +D, (33)

we obtain equation (32) in the form

∂ϕ
∂t + δ∇2ϕ− (ϕ+ C) α2δ

[
∂ψ
∂t + α

2 (gradψ)2
]

= 0. (34)

In accordance with the expression (33) we have

ϕ+ C = exp
{
α
δ

(
H − 1

2ψ −D
)}
.

Then, starting from the initial condition for function H, that for t = 0,
H = H0 = H∗0 + 1

2γ θ
∗
0 = ψ0, and assuming C = D = 0, we can represent the

initial condition for function ϕ:

for t = 0 ϕ = exp
{
α
2δψ0

}
.

The usual boundary conditions are as follows:
a) For the permeable parts of the boundary surface the limiting(boundary)

values H = Hs must be given, from which

ϕs = exp
{α
δ

(
Hs − 1

2ψs
)}

;

b) On the impermeable parts (
∂H
∂n

)
s

= 0,

from which (
∂ϕ
∂n

)
s

= −ϕs α2δ
(
∂ψ
∂n

)
s
.

Thus we formulate the mix initial boundary value problem for any
type of the consolidated region of the soil medium, dictated by
practical needs. It is appropriate to tackle such a problem by
the method of finite differences. Taking, for example, in the case
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of the planar problem, a square grid with the intervals between the grid points
equal to ∆h, and assuming that the time steps are constant and equal ∆t we
can, passing to the finite differences, to write equation (34) in the form:

1
∆t (ϕt+1,i,k − ϕt,i,k) + δ

∆h2 (Λt − 4ϕt,i,k)−
−ϕt,i,k α2δ

[
1

∆t∆ψt+1,t,i,k + α
2 (gradψ)2

t,i,k

]
= 0,

where

Λt = ϕt,i+1,k + ϕt,i−1,k + ϕt,i,k+1 + ϕt,i,k−1 ,

∆ψt+1,t,i,k = ψt+1,i,k − ψt,i,k .

From this we have

ϕt+1,i,k = ϕt,i,k
[
1− 4η + α

2δ∆ψt+1,t,i,k − ηα2∆h2

4δ2 (gradψ)2
t,i,k

]
+ ηΛt , (35)

where
η = −δ ∆t

∆h2 .

If we assume η = 0.25, then

ϕt+1,i,k = ϕt,i,k
[
α
2δ∆ψt+1,t,i,k − α2∆h2

16δ2 (gradψ)2
t,i,k

]
+ 1

4Λt .

The value η = 0.25 may be taken if

for ϕt,i,k >
1
4Λt ϕt+1,i,k > 1

4Λt ,

for ϕt,i,k <
1
4Λt ϕt+1,i,k 6 1

4Λt .

In the reverse case the value η should be assumed to be less in order that
one of the inequalities may be maintained.

If the limiting(boundary) conditions do not depend on time and the consol-
idating loading is constant, then

ψ = ψ0 ,

∆ψt+1,t,k = 0

and equation (35) has the form

ϕt+1,i,k = ϕt,i,k
[
1− 4η − ηα2∆h2

4δ2 (gradψ0)2
i,k

]
+ ηΛt =

= ϕt,i,kAi,k + ηΛt .

In that case a table of the values Ai,k having been prepared, the values of
the function ϕ are very simply found.

The values of function ϕ having been determined for all grid points within
the region of compaction considered here, and, successively, for all moments of
time used in the computations, beginning with t = 0 to some arbitrarily selected
moment of time t, the subsequent determinations of the values of the required
function H is reduced without difficulty to the expression (33).
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Let us consider now the case of the variation in time of the external consol-
idating loading of q(x) and let us assume, for example, that that variation may
be represented by the linear function

q(x) = v(x)t = (v∆t) t
∆t = q∆t(x)m,

where v(x) is the velocity of variation of the ordinates of the loading diagram,
q∆t is the diagram of the increase of the ordinates of external loading during
the time interval ∆t, and m is the number of intervals of time in a moment of
time t.

Then assuming, for example, H∗ = const, we have

∆ψt+1,t,i,k = 1
2γ∆θ∗t+1,t,i,k = 1

2γ θi,k(q∆t) ,

(gradψ)2
t,i,k = 1

4γ2 (grad θ∗)2
t,i,k = m2

4γ2 [grad θ∗i,k(q∆t)]
2 ,

where m = 1, 2, 3, . . .
Equation (35) may, consequently be represented in the form

ϕt+1,i,k = ϕt,i,k[1− 4η +Ai,k −Bi,km2] + ηΛt ,

where
Ai,k = α

4δγ θ
∗
i,k(q∆t)

and
Bi,k = ηα2∆h2

16δ2γ2 [grad θ∗i,k(q∆t)]
2 ,

where those values are constant for each grid point (i, k).
In the particular case of a load uniformly distributed along the edge of the

hemi-plane of a strip (−a,+a):

θ∗i,k(q∆t) =
2

π
q∆tarc tg

2xa(
x
a

)2
+
(
z
a

)2 − 1
,

[grad θ∗i,k(q∆t)]
2 =

16

π2a2
q2
∆t

1[(
x
a

)2
+
(
z
a

)2
+ 1
]2 − 4

(
x
a

)2 ,
where x and z are the horizontal and the vertical co-ordinates of the grid point
(i, k).

In the cases where the consolidating load gradually increases, for t = 0 it is
equal to 0 and the initial condition has the form: for t = 0, assuming H∗ = 0,
θ∗ = 0, we have ϕ = 1.

On permeable parts of the boundary hemi-plane of axis z = 0 for grid points
(i, 0) assuming Hi,0 = 0 we find

ϕi,0 = exp
{
− α

4γδ θ
∗
i,0

}
.

On non-permeable parts of axis z = 0 we have(
∂ϕ
∂x

)
i,0

= −ϕi,0 α2δ
(
∂ψ
∂x

)
i,0

= ϕi,0
α

4δγ

(
∂θ∗

∂x

)
i,0
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or, converting to finite differences, we have

ϕi,0−ϕi,1
∆h = −ϕi,0 α

4δγ

θ∗i,0−θi,1
∆h ,

whence
ϕi,0 =

ϕi,1
1 + α

4δγ (θ∗i,0 − θi,1)
.

The order of the numerical solution of problems of this kind is obvious and
there is no need for further consideration.
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