|
Журнал вычислительной математики и математической физики, 2004, том 44, номер 8, страницы 1442–1449
(Mi zvmmf796)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Задача Дирихле и связанные с ней задачи для составного пространства с кольцевыми щелями на плоскости раздела полупространств в осесимметричном случае
Д. Ю. Любимов, Л. Г. Смирнов 109180 Москва, Старомонетный пер., 26, Минатом РФ
Аннотация:
Рассматривается задача Дирихле и связанные с ней задачи для двух спаянных разнородных полупространств с концентрическими кольцевыми щелями в осесимметрическом случае, на границах которых задаются условия I либо II рода. С помощью теории обобщенных аналитических функций (ОАФ) задача сводится к сингулярным интегральным уравнениям для двух ОАФ, через которые выражается искомое решение. В случае когда имеется лишь одна круговая щель, решение находится в замкнутом виде. Приводятся примеры решений для первой и второй краевых задач, когда на границах щели значения искомой функции либо ее производные постоянны. В этом случае решения находятся в аналитическом виде. Библ. 3.
Ключевые слова:
контактные задачи, задача Дирихле для уравнения Лапласа в плоскости с щелями, метод аналитических функций.
Поступила в редакцию: 24.01.2001
Образец цитирования:
Д. Ю. Любимов, Л. Г. Смирнов, “Задача Дирихле и связанные с ней задачи для составного пространства с кольцевыми щелями на плоскости раздела полупространств в осесимметричном случае”, Ж. вычисл. матем. и матем. физ., 44:8 (2004), 1442–1449; Comput. Math. Math. Phys., 44:8 (2004), 1366–1373
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/zvmmf796 https://www.mathnet.ru/rus/zvmmf/v44/i8/p1442
|
Статистика просмотров: |
Страница аннотации: | 314 | PDF полного текста: | 102 | Список литературы: | 71 | Первая страница: | 2 |
|