Образец цитирования:
Б. Т. Поляк, “Градиентные методы решения уравнений и неравенств”, Ж. вычисл. матем. и матем. физ., 4:6 (1964), 995–1005; U.S.S.R. Comput. Math. Math. Phys., 4:6 (1964), 17–32
\RBibitem{Pol64}
\by Б.~Т.~Поляк
\paper Градиентные методы решения уравнений и неравенств
\jour Ж. вычисл. матем. и матем. физ.
\yr 1964
\vol 4
\issue 6
\pages 995--1005
\mathnet{http://mi.mathnet.ru/zvmmf7629}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0187369}
\zmath{https://zbmath.org/?q=an:0147.35302}
\transl
\jour U.S.S.R. Comput. Math. Math. Phys.
\yr 1964
\vol 4
\issue 6
\pages 17--32
\crossref{https://doi.org/10.1016/0041-5553(64)90079-5}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/zvmmf7629
https://www.mathnet.ru/rus/zvmmf/v4/i6/p995
Эта публикация цитируется в следующих 52 статьяx:
Lu Xia, Stefano Massei, Michiel E. Hochstenbach, “On the convergence of the gradient descent method with stochastic fixed-point rounding errors under the Polyak–Łojasiewicz inequality”, Comput Optim Appl, 2025
Revati Gunjal, Syed Shadab Nayyer, S.R. Wagh, N.M. Singh, “Controlled gradient descent: A control theoretical perspective for optimization”, Results in Control and Optimization, 15 (2024), 100417
Yue Xu, Xu-Yao Zhang, Zhaoxiang Zhang, Cheng-Lin Liu, “Large-scale continual learning for ancient Chinese character recognition”, Pattern Recognition, 150 (2024), 110283
Huqiang Cheng, Xiaofeng Liao, Huaqing Li, Qingguo Lü, You Zhao, “Privacy-Preserving Push-Pull Method for Decentralized Optimization via State Decomposition”, IEEE Trans. on Signal and Inf. Process. over Networks, 10 (2024), 513
S. S. Ablaev, A. N. Beznosikov, A. V. Gasnikov, D. M. Dvinskikh, A. V. Lobanov, S. M. Puchinin, F. S. Stonyakin, “On Some Works of Boris Teodorovich Polyak on the Convergence of Gradient Methods and Their Development”, Comput. Math. and Math. Phys., 64:4 (2024), 635
Amir Ali Farzin, Iman Shames, 2024 European Control Conference (ECC), 2024, 3207
N. Vater, A. Borzì, “Convergence of a quasi-Newton method for solving systems of nonlinear underdetermined equations”, Comput Optim Appl, 2024
Ivan O. Osipov, “Convexity of reachable sets of quasilinear systems”, Ural Math. J., 9:2 (2023), 141–156
Chin-Yuan Yeh, Hsi-Wen Chen, De-Nian Yang, Wang-Chien Lee, Philip S. Yu, Ming-Syan Chen, 2023 IEEE 39th International Conference on Data Engineering (ICDE), 2023, 2510
Kun Zeng, Jinlan Liu, Zhixia Jiang, Dongpo Xu, “A Decreasing Scaling Transition Scheme from Adam to SGD”, Advcd Theory and Sims, 5:7 (2022)
Ning Sun, Chen Yang, Ričardas Zitikis, “Detecting systematic anomalies affecting systems when inputs are stationary time series”, Appl Stoch Models Bus & Ind, 38:3 (2022), 512
Miroslav S. Petrov, Todor D. Todorov, Lecture Notes in Computer Science, 12949, Computational Science and Its Applications – ICCSA 2021, 2021, 18
Boris Polyak, Andrey Tremba, “Sparse solutions of optimal control via Newton method for under-determined systems”, J Glob Optim, 76:3 (2020), 613
Boris Polyak, Andrey Tremba, “New versions of Newton method: step-size choice, convergence domain and under-determined equations”, Optimization Methods and Software, 35:6 (2020), 1272
Ning Sun, Chen Yang, Ricardas Zitikis, “Detecting Systematic Anomalies Affecting Systems When Inputs Are Stationary Time Series”, SSRN Journal, 2020
Masoud Roudneshin, Jalal Arabneydi, Amir G. Aghdam, 2020 59th IEEE Conference on Decision and Control (CDC), 2020, 512
Tianyu Zhao, Chengliang Chai, Yuyu Luo, Jianhua Feng, Yan Huang, Songfan Yang, Haitao Yuan, Haoda Li, Kaiyu Li, Fu Zhu, Kang Pan, “Towards Automatic Mathematical Exercise Solving”, Data Sci. Eng., 4:3 (2019), 179
Tianyu Zhao, Yan Huang, Songfan Yang, Yuyu Luo, Jianhua Feng, Yong Wang, Haitao Yuan, Kang Pan, Kaiyu Li, Haoda Li, Fu Zhu, Lecture Notes in Computer Science, 11446, Database Systems for Advanced Applications, 2019, 760
Soomin Lee, Michael M. Zavlanos, “Approximate Projection Methods for Decentralized Optimization With Functional Constraints”, IEEE Trans. Automat. Contr., 63:10 (2018), 3248