|
Журнал вычислительной математики и математической физики, 1980, том 20, номер 5, страницы 1328–1333
(Mi zvmmf5166)
|
|
|
|
Научные сообщения
Неустойчивость стационарных неоднородных решений задачи Коши для квазилинейного параболического уравнения и её экологические применения
В. Н. Разжевайкин Москва
Аннотация:
Доказывается, что в классе ограниченных достаточно гладких функций никакое стационарное решение задачи Коши для квазилинейного параболического уравнения на прямой $\partial u/\partial t=\partial^2u/\partial x^2+b(u)$, отличное от постоянного, не является устойчивым, если только функция $b(u)$ достаточно гладкая и не имеет первообразной, у которой по меньшей мере два нуля совпадают с нулями функции $b(u)$.
Поступила в редакцию: 03.10.1979
Образец цитирования:
В. Н. Разжевайкин, “Неустойчивость стационарных неоднородных решений задачи Коши для квазилинейного параболического уравнения и её экологические применения”, Ж. вычисл. матем. и матем. физ., 20:5 (1980), 1328–1333; U.S.S.R. Comput. Math. Math. Phys., 20:5 (1980), 235–241
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/zvmmf5166 https://www.mathnet.ru/rus/zvmmf/v20/i5/p1328
|
|