|
Журнал вычислительной математики и математической физики, 2010, том 50, номер 4, страницы 679–698
(Mi zvmmf4861)
|
|
|
|
Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)
Возмущенная краевая задача на собственные значения для оператора Шрёдингера на отрезке
И. Х. Хуснуллин 450000 Уфа, ул. Октябрьской Революции, 3а, Башкирский гос. пед. ун-т
Аннотация:
Рассматривается возмущенная двухпараметрическая краевая задача для дифференциального оператора второго порядка на отрезке с граничными условиями Дирихле. Возмущение описывается потенциалом вида $\mu^{-1}V((x-x_0)\varepsilon^{-1})$, где $0<\varepsilon\ll1$, $\mu$ — произвольный параметр, но существует число $\delta>0$ такое, что $\varepsilon/\mu=o(\varepsilon^\delta)$. Показано, что собственные значения такого оператора при $\varepsilon\to0$ сходятся к собственным значениям оператора без потенциала, и построены полные асимптотические разложения собственных значений и собственных функций возмущенного оператора. Библ. 17.
Ключевые слова:
дифференциальный оператор второго порядка, сингулярное возмущение, собственное значение, асимптотика.
Поступила в редакцию: 10.09.2009
Образец цитирования:
И. Х. Хуснуллин, “Возмущенная краевая задача на собственные значения для оператора Шрёдингера на отрезке”, Ж. вычисл. матем. и матем. физ., 50:4 (2010), 679–698; Comput. Math. Math. Phys., 50:4 (2010), 646–664
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/zvmmf4861 https://www.mathnet.ru/rus/zvmmf/v50/i4/p679
|
Статистика просмотров: |
Страница аннотации: | 489 | PDF полного текста: | 127 | Список литературы: | 86 | Первая страница: | 6 |
|