|
Журнал вычислительной математики и математической физики, 1986, том 26, номер 3, страницы 348–356
(Mi zvmmf4031)
|
|
|
|
Эта публикация цитируется в 19 научных статьях (всего в 19 статьях)
Рекурсивный алгоритм для аппроксимаций Паде–Эрмита
А. В. Сергеев Ленинград
Аннотация:
Предложен алгоритм последовательного вычисления многозначных аппроксимаций, или аппроксимаций Паде–Эрмита. Для многочленов, которые участвуют в определении аппроксимаций Паде–Эрмита, получены простые формулы, обобщающие рекуррентные соотношения между числителями и знаменателями подходящих цепных дробей. Найдены общие выражения для коэффициентов рекуррентных соотношений в случаях квадратичных и кубических аппроксимаций к функциям $(1+x)^{\alpha}$ и $e^x$.
Поступила в редакцию: 12.07.1984 Исправленный вариант: 04.04.1985
Образец цитирования:
А. В. Сергеев, “Рекурсивный алгоритм для аппроксимаций Паде–Эрмита”, Ж. вычисл. матем. и матем. физ., 26:3 (1986), 348–356; U.S.S.R. Comput. Math. Math. Phys., 26:2 (1986), 17–22
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/zvmmf4031 https://www.mathnet.ru/rus/zvmmf/v26/i3/p348
|
|