|
Общие численные методы
Эвристический рациональный алгоритм, проверяющий конгруэнтность нормальных матриц
С. Д. Икрамовa, А. М. Назариb a Москва, Ленинские горы, МГУ, ВМК, Россия
b Эрак, Университет Эрака, факультет математики, Исламская Республика Иран
Аннотация:
Рациональным мы называем конечный алгоритм, использующий только арифметические операции. Известны рациональные методы проверки конгруэнтности пары эрмитовых или пары унитарных матриц. Предложен рациональный алгоритм для проверки конгруэнтности нормальных матриц общего вида. Библ. 3. Фиг. 2.
Ключевые слова:
конгруэнтность, юнитоид, коквадрат, подобие, теплицево разложение, индексы инерции, пифагоровы тройки, Maple, циркулянты.
Поступила в редакцию: 28.02.2020 Исправленный вариант: 28.02.2020 Принята в печать: 09.06.2020
Образец цитирования:
С. Д. Икрамов, А. М. Назари, “Эвристический рациональный алгоритм, проверяющий конгруэнтность нормальных матриц”, Ж. вычисл. матем. и матем. физ., 60:10 (2020), 1656–1663; Comput. Math. Math. Phys., 60:10 (2020), 1601–1608
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/zvmmf11141 https://www.mathnet.ru/rus/zvmmf/v60/i10/p1656
|
Статистика просмотров: |
Страница аннотации: | 140 | Список литературы: | 27 |
|