|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Аналитическое решение задачи о колебаниях плазмы в полупространстве с диффузными граничными условиями
А. В. Латышев, С. Ш. Сулейманова 105005 Москва, ул. Радио, 10а, МГОУ
Аннотация:
Аналитически решена граничная задача о поведении (колебаниях) электронной плазмы с произвольной степенью вырождения электронного газа в полупространстве с диффузными граничными условиями. Применяются кинетическое уравнение Власова–Больцмана с интегралом столкновений типа Бхатнагар–Гросс–Крук и уравнение Максвелла для электрического поля. Функция распределения электронов и электрическое поле внутри плазмы получены в виде разложений по собственным решениям исходной системы уравнений. Коэффициенты этих разложений найдены с помощью граничных условий. Библ. 23. Фиг. 5.
Ключевые слова:
уравнение Власова–Больцмана, уравнение Максвелла, частота столкновений, электромагнитное поле, моды Друде, Дебая, Ван Кампена, дисперсионная функция, краевая задача Римана.
Поступила в редакцию: 03.11.2016 Исправленный вариант: 14.02.2018
Образец цитирования:
А. В. Латышев, С. Ш. Сулейманова, “Аналитическое решение задачи о колебаниях плазмы в полупространстве с диффузными граничными условиями”, Ж. вычисл. матем. и матем. физ., 58:9 (2018), 1564–1582; Comput. Math. Math. Phys., 58:9 (2018), 1510–1530
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/zvmmf10774 https://www.mathnet.ru/rus/zvmmf/v58/i9/p1564
|
Статистика просмотров: |
Страница аннотации: | 246 | Список литературы: | 50 |
|