Журнал вычислительной математики и математической физики
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Ж. вычисл. матем. и матем. физ.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Журнал вычислительной математики и математической физики, 2014, том 54, номер 4, страницы 619–685
DOI: https://doi.org/10.7868/S004446691404005X
(Mi zvmmf10021)
 

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Применение метода мультиполей к прямым и обратным задачам для уравнения Грэда–Шафранова с нелокальным условием

С. И. Безродныхab, В. И. Власовa

a 119991 Москва, ул. Вавилова, 40, ВЦ РАН
b 19992 Москва, Университетский просп., 13, ГАИШ МГУ
Список литературы:
Аннотация: В плоских односвязных областях с кусочно-гладкой границей $\Gamma$ рассматриваются две однородные задачи Дирихле для уравнения Грэда–Шафранова с аффинной правой частью, обозначаемые $(\mathfrak{D})$ и $(\mathfrak{U})$, вторая из которых содержит нелокальное условие. Рассматриваются также соответствующие обратные задачи $(\mathfrak{D}^{-1})$ и $(\mathfrak{U}^{-1})$, заключающиеся в нахождении неизвестных параметров правой части уравнения по информации о нормальной производной решения прямых задач. Указанные задачи возникают при расчете характеристик потока плазмы в токамаке.
В работе установлено, что эти параметры могут быть найдены по двум заданным величинам: 1) значению нормальной производной соответствующей прямой задачи, физически означающей величину магнитного поля в любой одной точке $\tilde{x}$ из специального подмножества $\tilde{\Gamma}$ границы $\Gamma$ и 2) интегралу по $\Gamma$ от нормальной производной, физически означающему величину полного тока, проходящего по сечению токамака. Установлено, что обе задачи однозначно разрешимы, и указаны необходимые и достаточные для этого условия. Предложен метод нахождения искомых параметров, включающий способ отыскания подмножества $\tilde{\Gamma}$. Полученные результаты базируются, во-первых, на методе мультиполей, обеспечивающем высокоточное вычисление нормальных производных решения прямых задач $(\mathfrak{D})$ и $(\mathfrak{U})$, и, во-вторых, на найденных асимптотиках для этих производных при стремлении к $\infty$ одного из параметров правой части уравнения. Библ. 82. Фиг. 26.
Ключевые слова: уравнение Грэда–Шафранова, обратная задача, нелокальное условие, токамак, расчет магнитного поля, метод мультиполей.
Поступила в редакцию: 08.11.2013
Англоязычная версия:
Computational Mathematics and Mathematical Physics, 2014, Volume 54, Issue 4, Pages 631–695
DOI: https://doi.org/10.1134/S0965542514040058
Реферативные базы данных:
Тип публикации: Статья
УДК: 519.634
Образец цитирования: С. И. Безродных, В. И. Власов, “Применение метода мультиполей к прямым и обратным задачам для уравнения Грэда–Шафранова с нелокальным условием”, Ж. вычисл. матем. и матем. физ., 54:4 (2014), 619–685; Comput. Math. Math. Phys., 54:4 (2014), 631–695
Цитирование в формате AMSBIB
\RBibitem{BezVla14}
\by С.~И.~Безродных, В.~И.~Власов
\paper Применение метода мультиполей к прямым и обратным задачам для уравнения Грэда--Шафранова с нелокальным условием
\jour Ж. вычисл. матем. и матем. физ.
\yr 2014
\vol 54
\issue 4
\pages 619--685
\mathnet{http://mi.mathnet.ru/zvmmf10021}
\crossref{https://doi.org/10.7868/S004446691404005X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3200037}
\elib{https://elibrary.ru/item.asp?id=21378522}
\transl
\jour Comput. Math. Math. Phys.
\yr 2014
\vol 54
\issue 4
\pages 631--695
\crossref{https://doi.org/10.1134/S0965542514040058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335679800007}
\elib{https://elibrary.ru/item.asp?id=23990905}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84907421840}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/zvmmf10021
  • https://www.mathnet.ru/rus/zvmmf/v54/i4/p619
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Статистика просмотров:
    Страница аннотации:553
    PDF полного текста:206
    Список литературы:97
    Первая страница:23
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024