|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Применение метода мультиполей к прямым и обратным задачам для уравнения Грэда–Шафранова с нелокальным условием
С. И. Безродныхab, В. И. Власовa a 119991 Москва, ул. Вавилова, 40, ВЦ РАН
b 19992 Москва, Университетский просп., 13, ГАИШ МГУ
Аннотация:
В плоских односвязных областях с кусочно-гладкой границей $\Gamma$ рассматриваются две однородные задачи Дирихле для уравнения Грэда–Шафранова с аффинной правой частью, обозначаемые $(\mathfrak{D})$ и $(\mathfrak{U})$, вторая из которых содержит нелокальное условие. Рассматриваются также соответствующие обратные задачи $(\mathfrak{D}^{-1})$ и $(\mathfrak{U}^{-1})$, заключающиеся в нахождении неизвестных параметров правой части уравнения по информации о нормальной производной решения прямых задач. Указанные задачи возникают при расчете характеристик потока плазмы в токамаке.
В работе установлено, что эти параметры могут быть найдены по двум заданным величинам: 1) значению нормальной производной соответствующей прямой задачи, физически означающей величину магнитного поля в любой одной точке $\tilde{x}$ из специального подмножества $\tilde{\Gamma}$ границы $\Gamma$ и 2) интегралу по $\Gamma$ от нормальной производной, физически означающему величину полного тока, проходящего по сечению токамака. Установлено, что обе задачи однозначно разрешимы, и указаны необходимые и достаточные для этого условия. Предложен метод нахождения искомых параметров, включающий способ отыскания подмножества $\tilde{\Gamma}$. Полученные результаты базируются, во-первых, на методе мультиполей, обеспечивающем высокоточное вычисление нормальных производных решения прямых задач $(\mathfrak{D})$ и $(\mathfrak{U})$, и, во-вторых, на найденных асимптотиках для этих производных при стремлении к $\infty$ одного из параметров правой части уравнения. Библ. 82. Фиг. 26.
Ключевые слова:
уравнение Грэда–Шафранова, обратная задача, нелокальное условие, токамак, расчет магнитного поля, метод мультиполей.
Поступила в редакцию: 08.11.2013
Образец цитирования:
С. И. Безродных, В. И. Власов, “Применение метода мультиполей к прямым и обратным задачам для уравнения Грэда–Шафранова с нелокальным условием”, Ж. вычисл. матем. и матем. физ., 54:4 (2014), 619–685; Comput. Math. Math. Phys., 54:4 (2014), 631–695
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/zvmmf10021 https://www.mathnet.ru/rus/zvmmf/v54/i4/p619
|
Статистика просмотров: |
Страница аннотации: | 557 | PDF полного текста: | 212 | Список литературы: | 98 | Первая страница: | 23 |
|