|
Записки научных семинаров ПОМИ, 2003, том 301, страницы 144–171
(Mi znsl943)
|
|
|
|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
Алгебры косых полиномов, порождаемые квадратичными однородными соотношениями
А. В. Головашкинa, В. М. Максимовb a Тверской государственный технический университет
b Российский государственный гуманитарный университет
Аннотация:
Рассматриваются алгебры с двумя образующими $a$ и $b$, порождаемые квадратичным соотношением $ba=\alpha a^2+\beta ab+\gamma b^2$, где коэффициенты $\alpha$, $\beta$, $\gamma$ принадлежат произвольному полю $F$ характеристики $0$. Найдены условия, при которых такие алгебры представляются алгебрами косых полиномов с образующей $b$ над кольцом коэффициентов $F[a]$. Эти условия эквивалентны существованию базиса Пуанкаре–Биркгофа–Витта, т.е. базиса вида $\{a^m,b^n\}$.
Библ. – 16 назв.
Поступило: 19.08.2003
Образец цитирования:
А. В. Головашкин, В. М. Максимов, “Алгебры косых полиномов, порождаемые квадратичными однородными соотношениями”, Теория представлений, динамические системы, комбинаторные и алгоритмические методы. IX, Зап. научн. сем. ПОМИ, 301, ПОМИ, СПб., 2003, 144–171; J. Math. Sci. (N. Y.), 129:2 (2005), 3757–3771
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/znsl943 https://www.mathnet.ru/rus/znsl/v301/p144
|
|