Записки научных семинаров ПОМИ
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Зап. научн. сем. ПОМИ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Записки научных семинаров ПОМИ, 2022, том 516, страницы 69–120 (Mi znsl7270)  

Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)

О характеристических определителях граничных задач для систем типа Дирака

А. Лунев, М. Маламуд

Российский Университет Дружбы Народов, Математический институт им. С. М. Никольского, ул. Орджоникидзе, 3, Москва
Список литературы:
Аннотация: Изучаются асимптотические свойства спектра граничных задач для следующей $n \times n$-системы типа Дирака
$$ y' + Q(x) y = i \lambda B(x) y, y = \mathrm{col}\,(y_1, \ldots, y_n), x \in [0,\ell], $$
на конечном отрезке $[0,\ell]$ с общими регулярными граничными условиями $C y(0) + D y(\ell) = 1$, где $C, D \in \mathbb{C}^{n \times n}$. Здесь $Q = (Q_{jk})_{j,k=1}^n \in L^1$ – потенциальная матрица и
$$ B = \mathrm{diag}\,(\beta_1, \ldots, \beta_n) = B^* \in L^1([0,\ell];\mathbb{R}^{n \times n}) $$
– диагональная “весовая” матрица. При $n=2m$ и $B(x) = \mathrm{diag}\,(-I_m, I_m)$ эта система эквивалентна $n\times n$-системе Дирака.
Показывается, что при условии $\mathrm{supp}\,(Q_{jk}) \subset \mathrm{supp}\,(\beta_k - \beta_j)$ разность характеристических определителей $\Delta_Q(\cdot)$ и $\Delta_0(\cdot)$ изучаемой и “невозмущенной” ($Q \equiv 0$) граничных задач является преобразованием Фурье некоторой суммируемой функции,
$$ \Delta_Q(\lambda) = \Delta_0(\lambda) + \int\limits_{\widetilde{b}_-}^{\widetilde{b}_+} g(u) e^{i \lambda u} du, g \in L^1[\widetilde{b}_-, \widetilde{b}_+]. $$
Этот результат справедлив для произвольных граничных условий и произвольной диагональной матрицы $B(\cdot) = B(\cdot)^*$.
Это представление применяется для доказательства того, что характеристический определитель $\Delta_Q(\cdot)$ всегда является функцией класса $A$ экспоненциального типа, ограниченной на действительной оси. Также находятся условия, гарантирующие, что $\Delta_Q(\cdot)$ – функция типа синуса и дается точная асимптотика его нулей (собственных значений задачи) в этом случае.
Показывается также, что если элементы матрицы $B(\cdot)$ меняют знак, то даже в случае регулярных граничных условий в ситуации общего положения спектр распадается на две ветви: собственные значения “хорошей” ветви лежат в горизонтальной полосе и близки к таковым у “невозмущенной задачи”, а собственные числа “плохой” ветви имеют ненулевую плотность и уходящие в бесконечность мнимые части. Этот эффект иллюстрируется на конкретном $2 \times 2$-примере. Библ. – 37 назв.
Ключевые слова: Системы обыкновенных дифференциальных уравнения, регулярные граничные условия, функции типа синуса, асимптотика собственных значений.
Финансовая поддержка Номер гранта
Министерство науки и высшего образования Российской Федерации 075-15-2021-602
Работа поддержана Министерством науки и высшего образования Российской Федерации, соглашение 075-15-2021-602.
Поступило: 04.11.2022
Тип публикации: Статья
УДК: 517.9
Образец цитирования: А. Лунев, М. Маламуд, “О характеристических определителях граничных задач для систем типа Дирака”, Математические вопросы теории распространения волн. 52, Зап. научн. сем. ПОМИ, 516, ПОМИ, СПб., 2022, 69–120
Цитирование в формате AMSBIB
\RBibitem{LunMal22}
\by А.~Лунев, М.~Маламуд
\paper О характеристических определителях граничных задач для систем типа Дирака
\inbook Математические вопросы теории распространения волн.~52
\serial Зап. научн. сем. ПОМИ
\yr 2022
\vol 516
\pages 69--120
\publ ПОМИ
\publaddr СПб.
\mathnet{http://mi.mathnet.ru/znsl7270}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/znsl7270
  • https://www.mathnet.ru/rus/znsl/v516/p69
  • Эта публикация цитируется в следующих 2 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Статистика просмотров:
    Страница аннотации:85
    PDF полного текста:35
    Список литературы:19
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024