|
Записки научных семинаров ПОМИ, 2018, том 473, страницы 174–193
(Mi znsl6661)
|
|
|
|
Conformal limit for dimer models on the hexagonal lattice
[Конформный предел для димерных моделей на гексогональной решетке]
D. Keatinga, N. Reshetikhinbca, A. Sridhard a Department of Mathematics, University of California, Berkeley, CA 94720, USA
b St. Petersburg University, Russia
c KdV Institute for Mathematics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
d Google LLC
Аннотация:
В этой заметке выводится асимптотическое поведение локальных корреляционных функций в димерных моделях на некоторой области гексагональной решетки в непрерывном пределе, при котором размер области стремиться к бесконечности, а параметры модели соответствющим образом масштабируются. Библ. — 8 назв.
Ключевые слова:
димерные модели, дираковские ферминоны, оперратор Кастеляйна, уравнение Бургерса, конформные корреляционные функции.
Поступило: 22.11.2018
Образец цитирования:
D. Keating, N. Reshetikhin, A. Sridhar, “Conformal limit for dimer models on the hexagonal lattice”, Вопросы квантовой теории поля и статистической физики. 25, К 70-летию М. А. Семенова-Тян-Шанского, Зап. научн. сем. ПОМИ, 473, ПОМИ, СПб., 2018, 174–193; J. Math. Sci. (N. Y.), 242:5 (2019), 701–714
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/znsl6661 https://www.mathnet.ru/rus/znsl/v473/p174
|
Статистика просмотров: |
Страница аннотации: | 121 | PDF полного текста: | 60 | Список литературы: | 25 |
|