|
Записки научных семинаров ЛОМИ, 1982, том 107, страницы 136–149
(Mi znsl3419)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Оператор усреднения по счетному разбиению на минимальном симметричном идеале пространства $L^1(0,1)$
А. А. Меклер
Аннотация:
В терминах функций $f^*$ и $f^{**}$ даны условия, необходимые и достаточные для выполнения включения $\mathsf E(N_f|\mathscr T)\subset N_f$, где $f$ – произвольный элемент из $L^1(0,1)$, $N_f$ – наименьший симметричный идеал в $L^1(0,1)$, содержащий $f$, $\mathscr T$ – разбиение отрезка [0,1] точками последовательности $t_n\downarrow0$ и $\mathsf E(\cdot|\mathscr T)$ – оператор условного математического ожидания. Библ. – 7 назв.
Образец цитирования:
А. А. Меклер, “Оператор усреднения по счетному разбиению на минимальном симметричном идеале пространства $L^1(0,1)$”, Исследования по линейным операторам и теории функций. X, Зап. научн. сем. ЛОМИ, 107, Изд-во «Наука», Ленинград. отд., Л., 1982, 136–149; J. Soviet Math., 36:3 (1987), 382–391
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/znsl3419 https://www.mathnet.ru/rus/znsl/v107/p136
|
Статистика просмотров: |
Страница аннотации: | 143 | PDF полного текста: | 59 |
|