Аннотация:
Устанавливается разрушение за конечный промежуток времени
части решений некоторых классов квазилинейных уравнений параболического
и гиперболического типов, линейная часть которых имеет
общий вид. К ним относятся некоторые гиперболические уравнения,
имеющие L−M пары. Библ. 19 назв.
Образец цитирования:
В. К. Калантаров, О. А. Ладыженская, “О возникновении коллапсов
для квазилинейных уравнений параболического и гиперболического
типов”, Краевые задачи математической физики и смежные вопросы теории функций. 10, Зап. научн. сем. ЛОМИ, 69, Изд-во «Наука», Ленинград. отд., Л., 1977, 77–102; J. Soviet Math., 10:1 (1978), 53–70
\RBibitem{KalLad77}
\by В.~К.~Калантаров, О.~А.~Ладыженская
\paper О~возникновении коллапсов
для квазилинейных уравнений параболического и~гиперболического
типов
\inbook Краевые задачи математической физики и смежные вопросы теории функций.~10
\serial Зап. научн. сем. ЛОМИ
\yr 1977
\vol 69
\pages 77--102
\publ Изд-во «Наука», Ленинград. отд.
\publaddr Л.
\mathnet{http://mi.mathnet.ru/znsl1983}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=604036}
\zmath{https://zbmath.org/?q=an:0388.35039|0354.35054}
\transl
\jour J. Soviet Math.
\yr 1978
\vol 10
\issue 1
\pages 53--70
\crossref{https://doi.org/10.1007/BF01109723}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/znsl1983
https://www.mathnet.ru/rus/znsl/v69/p77
Эта публикация цитируется в следующих 228 статьяx:
Mokhtar Kirane, Radhouane Aounallah, Lotfi Jlali, “General Decay and Blowing‐Up Solutions of a Nonlinear Wave Equation With Nonlocal in Time Damping and Infinite Memory”, Math Methods in App Sciences, 2025
Yaojun Ye, Shuting Chang, “Existence and blow-up of solutions for higher-order Kirchhoff-type equation”, Rend. Circ. Mat. Palermo, II. Ser, 74:2 (2025)
Na Chen, Peihe Wang, Fushan Li, “GLOBAL EXISTENCE AND BLOW-UP PHENOMENA FOR THE DOUBLY NONLINEAR DIFFUSION EQUATION WITH NONLINEAR NEUMANN BOUNDARY CONDITIONS”, jaac, 14:3 (2024), 1467
M. Dimova, N. Kolkovska, N. Kutev, “Global behavior of the solutions to nonlinear wave equations with combined power-type nonlinearities with variable coefficients”, Nonlinear Analysis, 242 (2024), 113504
Ying Kong, Jia Geng, “Exact Periodic Wave Solutions for the Perturbed Boussinesq Equation with Power Law Nonlinearity”, Mathematics, 12:13 (2024), 1958
Андрей Баданин, Евгений Коротяев, “Обратная задача для LL-оператора пары Лакса уравнения Буссинеска
на окружности”, Функц. анализ и его прил., 58:3 (2024), 140–144; A. V. Badanin, E. L. Korotyaev, “Inverse problem for the LL-operator in the lax pair of the Boussinesq equation on the circle”, Funct. Anal. Appl., 58:3 (2024), 340–343
Le Cong Nhan, Y. Van Nguyen, Le Xuan Truong, “Optimal decay rate and blow-up of solution for a classical thermoelastic system with viscoelastic damping and nonlinear sources”, Z. Angew. Math. Phys., 75:5 (2024)
Rong Zhang, Trends in Mathematics, 5, Women in Analysis and PDE, 2024, 415
Gülistan Butak{\i}n, Erhan Pişkin, “Existence and blow up of solutions of a viscoelastic m(x)-biharmonic equation with logarithmic source term”, MMN, 25:2 (2024), 629
Natalia Kolkovska, Milena Dimova, Nikolai Kutev, “Nonexistence of global solutions to Klein-Gordon equations with variable coefficients power-type nonlinearities”, Open Mathematics, 21:1 (2023)
Rabil Ayazoglu, Ebubekir Akkoyunlu, “Bounds for the blow-up time a class of integro-differential problem of parabolic type with variable reaction term”, Comptes Rendus. Mécanique, 351:G2 (2023), 391
Guowei Liu, Hao Xu, “Refined Long Time Existence of the Boussinesq Equation with Large Initial Data in Rn”, Bull Braz Math Soc, New Series, 54:3 (2023)
Yang Liu, Byungsoo Moon, Vicenţiu D. Rădulescu, Runzhang Xu, Chao Yang, “Qualitative properties of solution to a viscoelastic Kirchhoff-like plate equation”, Journal of Mathematical Physics, 64:5 (2023)
Zihao Guan, Ning Pan, “Global Existence, Blowup, and Asymptotic Behavior for a Kirchhoff-Type Parabolic Problem Involving the Fractional Laplacian with Logarithmic Term”, Mathematics, 12:1 (2023), 5
Akbar B. Aliev, Gulshan Kh. Shafieva, “Blow‐up of solutions of wave equation with a nonlinear boundary condition and interior focusing source of variable order of growth”, Math Methods in App Sciences, 46:1 (2023), 1185
Soufiane Benkouider, Abita Rahmoune, “The Exponential Growth of Solution, Upper and Lower Bounds for the Blow-Up Time for a Viscoelastic Wave Equation with Variable- Exponent Nonlinearities”, WSEAS TRANSACTIONS ON MATHEMATICS, 22 (2023), 451
Jamila Kalantarova, “Blow up of solutions of systems of nonlinear equations of thermoelasticity”, Math Methods in App Sciences, 46:13 (2023), 13797
Nikolai Kutev, Milena Dimova, Natalia Kolkovska, Springer Proceedings in Mathematics & Statistics, 412, New Trends in the Applications of Differential Equations in Sciences, 2023, 83
Nazlı Irk{\i}l, “On the p-Laplacian type equation with logarithmic nonlinearity: existence, decay and blow up”, Filomat, 37:16 (2023), 5485