Вестник Южно-Уральского государственного университета. Серия «Математика. Механика. Физика»
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестник Южно-Уральского государственного университета. Серия «Математика. Механика. Физика», 2022, том 14, выпуск 1, страницы 27–34
DOI: https://doi.org/10.14529/mmph220103
(Mi vyurm508)
 

Математика

Асимптотика решения первой краевой задачи для сингулярно возмущенного дифференциального уравнения в частных производных второго порядка параболического типа

К. Г. Кожобеков, А. А. Шооруков, Д. А. Турсунов

Ошский государственный университет, г. Ош, Киргизская Республика
Список литературы:
Аннотация: Строится полное равномерное асимптотическое разложение по малому параметру решения первой краевой задачи. Первая краевая задача ставится для сингулярно возмущенного линейного неоднородного дифференциального уравнения в частных производных второго порядка с двумя независимыми переменными параболического типа. Задача исследуется на прямоугольнике. Особенности задачи - присутствие малого параметра перед оператором теплопроводности, существование угловых пограничных слоев на нижних углах прямоугольника. Требуется построить равномерное асимптотическое разложение решения первой краевой задачи на прямоугольнике, с любой степенью точности, при стремлении малого параметра к нулю. Асимптотическое разложение решения по малому параметру строится методом Вишика-Люстерника. При решении поставленной задачи нами используются: методы интегрирования обыкновенных дифференциальных уравнений, классический метод малого параметра, метод пограничных функций Вишика-Люстерника и принцип максимума. Как обычно, задача решается в двух этапах: в первом этапе строится формальное разложение решения первой краевой задачи, а во втором этапе оценивается остаточный член полученного разложения и этим доказывается, что полученное разложение действительно является асимптотическим на всем прямоугольнике. В первом этапе формальное асимптотическое решение ищется в виде суммы шести функций (решений): внешнее решение, определенное на всем прямоугольнике, погранслойное решение в малой окрестности нижней стороны прямоугольника, два боковых погранслойных решения в малой окрестности боковых сторон прямоугольника и два угловых погранслойных решения в окрестностях нижних вершин прямоугольника. Все эти погранслойные решения экспоненциально убывают вне пограничных слоев.
Ключевые слова: асимптотическое решение, малый параметр, сингулярно возмущенная задача, первая краевая задача, уравнение теплопроводности, погранслойное решение.
Поступила в редакцию: 27.12.2021
Тип публикации: Статья
УДК: 517.955.8
Образец цитирования: К. Г. Кожобеков, А. А. Шооруков, Д. А. Турсунов, “Асимптотика решения первой краевой задачи для сингулярно возмущенного дифференциального уравнения в частных производных второго порядка параболического типа”, Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ., 14:1 (2022), 27–34
Цитирование в формате AMSBIB
\RBibitem{KozShoTur22}
\by К.~Г.~Кожобеков, А.~А.~Шооруков, Д.~А.~Турсунов
\paper Асимптотика решения первой краевой задачи для сингулярно возмущенного дифференциального уравнения в частных производных второго порядка параболического типа
\jour Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ.
\yr 2022
\vol 14
\issue 1
\pages 27--34
\mathnet{http://mi.mathnet.ru/vyurm508}
\crossref{https://doi.org/10.14529/mmph220103}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/vyurm508
  • https://www.mathnet.ru/rus/vyurm/v14/i1/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:147
    PDF полного текста:55
    Список литературы:28
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024