Вестник Южно-Уральского государственного университета. Серия «Математика. Механика. Физика»
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестник Южно-Уральского государственного университета. Серия «Математика. Механика. Физика», 2021, том 13, выпуск 4, страницы 44–56
DOI: https://doi.org/10.14529/mmph210406
(Mi vyurm500)
 

Механика

Волновое уравнение с кубической нелинейностью и возбуждение колебаний в системе «среда-источник»

О. Н. Шабловский

Гомельский государственный технический университет имени П.О. Сухого, г. Гомель, Республика Беларусь
Список литературы:
Аннотация: Получено новое точное решение волнового уравнения с источником, зависящим от искомой функции и времени. Функция источника имеет полиномиальную (третьей степени) нелинейность, а также два дополнительных аддитивных члена, в которые входят вторая и третья степени искомой функции и явная синусная зависимость от времени. Построенные соотношения описывают именно процесс возбуждения колебаний в системе «среда – нелинейный реономный источник» и поэтому не содержат в себе как частный случай решение волнового уравнения с обычной кубической нелинейностью. Физическая интерпретация результатов работы обусловлена свойствами внешнего периодического воздействия на среду. Решение получено на плоскости «искомая функция – время» и дает аналитические выражения частных производных искомой функции по пространственной координате и времени. Это позволяет изучать нестационарные свойства изолиний искомой функции: их скорость и условия, при которых эта скорость является знакопеременной. Важное влияние на поведение изолиний оказывает наклон функции источника в малой окрестности нулевого значения искомой функции. А именно: его знак определяет режим движения (дозвуковой либо сверхзвуковой) изолинии, а его модуль служит масштабом при вычислении безразмерной частоты возбуждающих колебаний. В работе рассмотрены интервалы высоких и низких частот. В каждый момент времени градиентные свойства искомой функции характеризует монотонный профиль, располагающийся в полубесконечной области на плоскости «координата – искомая функция». Указаны условия, при которых происходят периодические по времени кинк-пульсации: в отдельные мгновения исходный монотонный профиль трансформируется в кинк, соответствующий двум состояниям равновесия системы. Изучены нестационарные свойства кривизны монотонных профилей: появление точек перегиба и точек спрямления. Рассмотрены два монотонных профиля: левая и правая ветви, расположенные в полубесконечных областях, соответственно, слева и справа от начала координат. Эти ветви совершают колебательные движения, периодически сближаясь и удаляясь друг от друга. В моменты времени, когда ветви примыкают к началу координат, они образуют неподвижный разрыв, который является слабым или сильным, если наклоны ветвей соответственно разных знаков либо одного знака. Обнаружено, что в ходе такого колебательного процесса в интервале высоких частот возможен трансзвуковой переход: скорость изолинии меняется от дозвукового значения к сверхзвуковому. Построена конфигурация волнового типа: левая и правая ветви, образующие слабый либо сильный разрыв, совершают периодическое по времени движение вдоль оси координат.
Ключевые слова: волновое уравнение, кубическая нелинейность источника, трансзвуковой переход, подвижная граница, слабый и сильный разрыв.
Поступила в редакцию: 20.09.2021
Тип публикации: Статья
УДК: 517.9
Образец цитирования: О. Н. Шабловский, “Волновое уравнение с кубической нелинейностью и возбуждение колебаний в системе «среда-источник»”, Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ., 13:4 (2021), 44–56
Цитирование в формате AMSBIB
\RBibitem{Sha21}
\by О.~Н.~Шабловский
\paper Волновое уравнение с кубической нелинейностью и возбуждение колебаний в системе <<среда-источник>>
\jour Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ.
\yr 2021
\vol 13
\issue 4
\pages 44--56
\mathnet{http://mi.mathnet.ru/vyurm500}
\crossref{https://doi.org/10.14529/mmph210406}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/vyurm500
  • https://www.mathnet.ru/rus/vyurm/v13/i4/p44
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:78
    PDF полного текста:24
    Список литературы:15
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024