|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Математика
Бифуркации полицикла, образованного двумя петлями сепаратрис негрубого седла динамической системы с центральной симметрией
В. Ш. Ройтенберг Ярославский государственный технический университет, г. Ярославль, Российская Федерация
Аннотация:
Рассматривается семейство гладких динамических систем, заданных на плоскости и зависящих от двумерного параметра, меняющегося в окрестности нуля. Все системы семейства предполагаются инвариантными при преобразовании симметрии относительно начала координат. При нулевом значении параметра динамическая система имеет простейшее негрубое седло, обе выходящие сепаратрисы которого идут в то же седло, образуя две петли. Полицикл «восьмерка», состоящий из петель, является аттрактором этой системы. Он имеет окрестность $U$, в граничных точках которой все траектории систем семейства с параметрами, близкими к нулю, входят в $U$. При условии общего положения описываются бифуркации в окрестности $U$ полицикла при изменении параметра. Значения параметра в малой окрестности нуля, при которых система является негрубой в $U$, образуют пять гладких кривых, входящих в начало координат, разбивающих эту окрестность на связные компоненты, для значений параметра из которых системы семейства являются грубыми. Для каждой компоненты описан топологический тип соответствующих динамических систем в $U$. В частности указаны области параметра, при которых система имеет в $U$ единственный аттрактор — узел, два аттрактора — узел и цикл, гомотопный в $U$ полициклу, или два симметричных цикла, гомотопных в $U$ петлям из полицикла, а также три аттрактора — узел и два симметричных цикла.
Ключевые слова:
семейство векторных полей на плоскости, центральная симметрия, инвариантность, негрубое седло, петля сепаратрисы седла, полицикл «восьмерка», бифуркация, устойчивый предельный цикл.
Поступила в редакцию: 26.05.2021
Образец цитирования:
В. Ш. Ройтенберг, “Бифуркации полицикла, образованного двумя петлями сепаратрис негрубого седла динамической системы с центральной симметрией”, Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ., 13:3 (2021), 39–46
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vyurm489 https://www.mathnet.ru/rus/vyurm/v13/i3/p39
|
Статистика просмотров: |
Страница аннотации: | 98 | PDF полного текста: | 21 | Список литературы: | 19 |
|