Вестник Южно-Уральского государственного университета. Серия «Математика. Механика. Физика»
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестник Южно-Уральского государственного университета. Серия «Математика. Механика. Физика», 2021, том 13, выпуск 2, страницы 11–16
DOI: https://doi.org/10.14529/mmph210202
(Mi vyurm476)
 

Математика

On one equation of internal waves
[Об одном уравнении внутренних волн]

K. Yu. Kotlovanov

South Ural State University, Chelyabinsk, Russian Federation
Список литературы:
Аннотация: В статье приводится аналитическое исследование одного уравнения внутренних волн, в некоторых источниках именуемое уравнением Пуанкаре, выведенное из основной системы гидродинамики. Данное уравнение характеризует распространение волн в толще однородной несжимаемой стратифицированной и, в отличии от уравнения Соболева, невращающейся жидкости. Рассмотрен случай, когда частота плавучести есть величина постоянная. Для уравнения внутренних волн рассматривается задача Коши-Дирихле. Данное уравнение имеет различные приложения в гидродинамике, например, при исследовании волн в океане. Исследование уравнения проводится в рамках теории полиномиально ограниченных пучков операторов. Уравнение внутренних волн редуцируется к задаче Коши абстрактному полулинейному уравнению соболевского типа второго порядка. Затем показывается, что решение поставленной задачи удовлетворяет абстрактной теории. Далее рассмотрены два примера. В первом примере область ограничена параллелепипедом, а во втором – цилиндром. Для каждого случая области показано, что относительный спектр пучка операторов ограничен, частотой плавучести. После строятся пропагаторы, разрешающие оператор-функции, для уравнения внутренних волн для каждой из областей. Подставив начальные данные в пропагаторы, получим аналитическое решение задачи Коши для уравнения внутренних волн.
Ключевые слова: уравнение внутренних волн, полиномиально ограниченный пучок операторов, уравнение соболевского типа, пропагаторы.
Поступила в редакцию: 15.04.2021
Тип публикации: Статья
УДК: 517.958
Язык публикации: английский
Образец цитирования: K. Yu. Kotlovanov, “On one equation of internal waves”, Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ., 13:2 (2021), 11–16
Цитирование в формате AMSBIB
\RBibitem{Kot21}
\by K.~Yu.~Kotlovanov
\paper On one equation of internal waves
\jour Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ.
\yr 2021
\vol 13
\issue 2
\pages 11--16
\mathnet{http://mi.mathnet.ru/vyurm476}
\crossref{https://doi.org/10.14529/mmph210202}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/vyurm476
  • https://www.mathnet.ru/rus/vyurm/v13/i2/p11
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:76
    PDF полного текста:26
    Список литературы:19
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024