|
Математика
О структуре пространства однородных полиномиальных дифференциальных уравнений на окружности
В. Ш. Ройтенберг Ярославский государственный технический университет, г. Ярославль, Российская Федерация
Аннотация:
Рассматриваются дифференциальные уравнения, правые части которых являются однородными тригонометрическими полиномами степени $n$. Фазовым пространством таких уравнений является окружность. Описаны грубые уравнения — уравнения, для которых топологическая структура фазового портрета не меняется при переходе к близкому уравнению. Уравнение является грубым тогда и только тогда, когда его правая часть имеет только простые нули, то есть все особые точки которого — гиперболические. Множество всех грубых уравнений открыто и всюду плотно в пространстве $E_{h}(n)$ рассматриваемых уравнений. Описаны связные компоненты этого множества. Два грубых уравнения, имеющие особые точки, принадлежат одной компоненте тогда и только тогда, когда они топологически эквивалентны. Во множестве всех негрубых уравнений выделено открытое и всюду плотное подмножество, состоящее из уравнений первой степени негрубости — уравнений, для которых топологическая структура фазового портрета не меняется при переходе к близкому негрубому уравнению. Оно является аналитическим подмногообразием коразмерности один в $E_{h}(n)$ (бифуркационным многообразием) и состоит из уравнений, для которых все особые точки гиперболические, за исключением двух седло-узловых особых точек. Доказано, что любые два грубых уравнения можно соединить в $E_{h}(n)$ гладкой дугой с конечным числом бифуркационных точек, в которых эта дуга трансверсальна бифуркационному многообразию.
Ключевые слова:
дифференциальное уравнение на окружности, тригонометрический полином, грубость, бифуркационное многообразие, связная компонента.
Поступила в редакцию: 18.12.2019
Образец цитирования:
В. Ш. Ройтенберг, “О структуре пространства однородных полиномиальных дифференциальных уравнений на окружности”, Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ., 12:2 (2020), 21–30
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vyurm445 https://www.mathnet.ru/rus/vyurm/v12/i2/p21
|
Статистика просмотров: |
Страница аннотации: | 137 | PDF полного текста: | 23 | Список литературы: | 25 |
|