|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Математика
Об обобщенной краевой задаче для линейных уравнений соболевского типа на графе
А. А. Баязитова Южно-Уральский государственный университет, г. Челябинск, Российская Федерация
Аннотация:
На геометрическом графе рассматривается краевая задача, где помимо условий непрерывности и баланса потоков, впервые вводится условие неподвижности в вершине графа, которое превращается в условие Дирихле, когда граф содержит одно ребро с двумя вершинами. При решении этой задачи сначала рассматривается соответствующая задача Штурма–Лиувилля, а затем полученные результаты применяются для решения задачи Коши двух линейных моделей, заданных на графе: уравнения Хоффа и уравнения Баренблатта–Желтова–Кочиной. Особенностью работы является и тот факт, что на каждом ребре графа задаются уравнения с различными коэффициентами, что вкупе с введением неподвижных вершин графа является впервые рассматриваемой задачей.
Обе модели относятся к уравнениям соболевского типа, изучение которых переживает эпоху своего расцвета. Проведенная редукция этих уравнений к абстрактному уравнению соболевского типа позволила применить метод вырожденных полугрупп операторов. Найдено фазовое пространство решений методом фазового пространства, заключающимся в сведении сингулярного уравнения к определенному на некотором подпространстве исходного пространства регулярному уравнению. Полученные результаты теорем могут быть применены при рассмотрении обратных задач, задач оптимального управления, начально-конечных и многоточечных задач, а также при рассмотрении стохастических уравнений для моделей, заданных на геометрическом графе.
Ключевые слова:
модели соболевского типа, уравнения на графе, методфазового пространства.
Поступила в редакцию: 13.06.2018
Образец цитирования:
А. А. Баязитова, “Об обобщенной краевой задаче для линейных уравнений соболевского типа на графе”, Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ., 10:3 (2018), 5–11
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vyurm378 https://www.mathnet.ru/rus/vyurm/v10/i3/p5
|
|