Вестник Южно-Уральского государственного университета. Серия «Математика. Механика. Физика»
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестник Южно-Уральского государственного университета. Серия «Математика. Механика. Физика», 2018, том 10, выпуск 1, страницы 27–36
DOI: https://doi.org/10.14529/mmph180104
(Mi vyurm363)
 

Механика

Восстановление параметров течения вязкой теплопроводной жидкости по некоторым измерениям на ее поверхности

А. И. Короткий, И. А. Цепелев

Институт математики и механики им. Н.Н. Красовского УрО РАН, г. Екатеринбург, Российская Федерация
Список литературы:
Аннотация: Определяются физические характеристики установившегося течения вязкой теплопроводной несжимаемой жидкости по измерениям температуры и потока тепла на ее дневной поверхности. Основными искомыми характеристиками являются температура и скорость жидкости во всей модельной области. Задача формализуется как обратная граничная задача для модели течения естественной тепловой конвекции высоковязкой несжимаемой жидкости. Математическая модель течения такой жидкости описывается стационарными уравнениями Навье–Стокса для ньютоновской реологии среды в приближении Буссинеска в поле силы тяжести, уравнением несжимаемости среды, стационарным уравнением сохранения энергии с соответствующими граничными условиями. Плотность и вязкость жидкости нелинейно зависят от ее температуры. Рассматриваемая обратная задача является некорректной и не обладает свойством устойчивости, малое возмущение исходных данных на участке границы, доступной для измерений, приводит к неконтролируемым ошибкам в определении искомых величин. Для численного решения неустойчивых задач требуется разработка специальных методов. Цель данной работы состоит в построении методов и алгоритмов конструктивного устойчивого численного моделирования решения рассматриваемой обратной задачи. Для реализации этой цели предлагается воспользоваться вариационным методом, который основан на сведении исходной задачи к некоторой экстремальной задаче на минимум подходящего целевого функционала и его устойчивой минимизации каким-либо подходящим способом. При такой стратегии организуется итерационный процесс последовательного численного решения краевых задач граничного управления, которые представляют собой системы дифференциальных уравнений с частными производными с полностью определенными граничными условиями. Для минимизации функционала качества применяется метод сопряженных градиентов в реализации Ролака–Рибьера. Градиент этого функционала и шаг спуска определяются аналитически, что позволяет существенно сократить объем вычислений. Метод конечных объемов применяется для интегрирования систем дифференциальных уравнений с частными производными с различными типами граничных условий. Построенные алгоритмы численного моделирования реализованы в пакете вычислений OpenFOAM. Проведен расчет модельного примера.
Ключевые слова: тепловая конвекция, вязкая жидкость, обратная граничная задача, вариационный метод, численное моделирование.
Финансовая поддержка Номер гранта
Уральское отделение Российской академии наук 18-1-1-8
Работа выполнена при поддержке Комплексной программы фундаментальных научных исследований УрО РАН (проект 18-1-1-8).
Поступила в редакцию: 03.10.2017
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.968+550.311
Образец цитирования: А. И. Короткий, И. А. Цепелев, “Восстановление параметров течения вязкой теплопроводной жидкости по некоторым измерениям на ее поверхности”, Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ., 10:1 (2018), 27–36
Цитирование в формате AMSBIB
\RBibitem{KorTse18}
\by А.~И.~Короткий, И.~А.~Цепелев
\paper Восстановление параметров течения вязкой теплопроводной жидкости по некоторым измерениям на ее поверхности
\jour Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ.
\yr 2018
\vol 10
\issue 1
\pages 27--36
\mathnet{http://mi.mathnet.ru/vyurm363}
\crossref{https://doi.org/10.14529/mmph180104}
\elib{https://elibrary.ru/item.asp?id=32323994}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/vyurm363
  • https://www.mathnet.ru/rus/vyurm/v10/i1/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:299
    PDF полного текста:76
    Список литературы:67
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024