|
МАТЕМАТИКА
О многомерных точных решениях уравнения нелинейной диффузии типа пантографа с переменным запаздыванием
А. А. Косов, Э. И. Семенов Институт динамики систем и теории управления им. В.М. Матросова СО РАН, 664033, Россия, г. Иркутск, ул. Лермонтова, 134
Аннотация:
Рассматривается многомерное уравнение нелинейной диффузии типа пантографа с линейно растущим запаздыванием по времени и масштабированием по пространственным переменным в источнике (стоке). Предложено строить точные решения методом редукции с использованием двух анзацев с квадратичной зависимостью от пространственных переменных. Зависимость решения от пространственных переменных находится из системы алгебраических уравнений, а зависимость от времени находится из системы обыкновенных дифференциальных уравнений с линейно растущим запаздыванием аргумента. Приводится ряд примеров точных решений, как радиально симметричных, так и анизотропных по пространственным переменным.
Ключевые слова:
уравнение нелинейной диффузии типа пантографа, растущее запаздывание по времени, масштабирование по пространственным переменным, редукция, точные решения
Поступила в редакцию: 27.05.2024 Принята в печать: 01.08.2024
Образец цитирования:
А. А. Косов, Э. И. Семенов, “О многомерных точных решениях уравнения нелинейной диффузии типа пантографа с переменным запаздыванием”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 34:3 (2024), 359–374
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vuu895 https://www.mathnet.ru/rus/vuu/v34/i3/p359
|
|