Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2023, том 33, выпуск 2, страницы 197–211
DOI: https://doi.org/10.35634/vm230201
(Mi vuu844)
 

МАТЕМАТИКА

Hitting functions for mixed partitions
[Функции попадания для смешанных разбиений окружности]

A. A. Dzhalilova, M. K. Homidovb

a Turin Polytechnic University, Tashkent, Uzbekistan
b National University of Uzbekistan named after Mirzo Ulugbek, Tashkent, Uzbekistan
Список литературы:
Аннотация: Пусть $T_{\rho}$ — иррациональный поворот на единичной окружности $S^{1}\simeq [0,1)$. Рассмотрим последовательность $\{\mathcal{P}_{n}\}$ возрастающих разбиений на $S^{1}$. Определим время попадания $N_{n}(\mathcal{P}_n;x,y):= \inf \{ j\geq 1\mid T^{j}_{\rho}(y) \in P_{n}(x)\}$, где $P_{n}(x)$ — элемент разбиения $\mathcal{P}_{n}$, содержащий точку $x$. Д. Ким и Б. Сео [9] доказали, что время попадания $K_n(\mathcal{Q}_n;x,y):= \frac{\log N_n(\mathcal{Q}_n;x,y)}{n}$ почти всюду (по мере Лебега) сходится к $\log2$, где последовательность разбиений $\{\mathcal{Q}_n\}$ порождена хаотическим отображением $f_{2}(x):=2x \bmod 1$. Хорошо известно, что отображение $f_{2}$ имеет положительную энтропию $\log2$. Возникает естественный вопрос о том, что если последовательность разбиений $\{\mathcal{P}_n\}$ порождена отображением с нулевой энтропией. В настоящей работе мы изучаем поведение $K_n(\tau_n;x,y)$ с последовательностью смешанных разбиений ${\tau_{n}}$ таких, что $\mathcal{Q}_{n}\cap [0,\frac{1}{2}]$ порождена отображением $f_{2}$, а $ \mathcal{D}_{n}\cap [\frac{1}{2},1]$ порождена иррациональным поворотом $T_{\rho}$. Доказано, что $K_n(\tau_n;x,y)$ почти всюду (по мере Лебега) сходится к кусочно-постоянной функции с двумя значениями. Также показано, что существуют некоторые иррациональные повороты, демонстрирующие различное поведение.
Ключевые слова: иррациональное вращение, время попадания, динамическое разбиение, предельная теорема.
Поступила в редакцию: 03.10.2022
Принята в печать: 10.05.2023
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.938
Язык публикации: английский
Образец цитирования: A. A. Dzhalilov, M. K. Homidov, “Hitting functions for mixed partitions”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 33:2 (2023), 197–211
Цитирование в формате AMSBIB
\RBibitem{DzhHom23}
\by A.~A.~Dzhalilov, M.~K.~Homidov
\paper Hitting functions for mixed partitions
\jour Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки
\yr 2023
\vol 33
\issue 2
\pages 197--211
\mathnet{http://mi.mathnet.ru/vuu844}
\crossref{https://doi.org/10.35634/vm230201}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001031945400001}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/vuu844
  • https://www.mathnet.ru/rus/vuu/v33/i2/p197
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Статистика просмотров:
    Страница аннотации:121
    PDF полного текста:32
    Список литературы:28
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024