|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
МАТЕМАТИКА
Задача Келдыша для трехмерного уравнения смешанного типа с тремя сингулярными коэффициентами в полубесконечном параллелепипеде
К. Т. Каримов Ферганский государственный университет,
150100, Узбекистан, г. Фергана, ул. Мураббийлар, 19
Аннотация:
В данной статье изучена задача Келдыша для трехмерного уравнения смешанного типа с тремя сингулярными коэффициентами в полубесконечном параллелепипеде. На основании свойства полноты систем собственных функций двух одномерных спектральных задач доказана теорема единственности. Для доказательства существования решения задачи использован спектральный метод Фурье, основанный на разделении переменных. Решение поставленной задачи построено в виде суммы двойного ряда Фурье–Бесселя. При обосновании равномерной сходимости построенного ряда использованы асимптотические оценки функций Бесселя действительного и мнимого аргумента. На их основе получены оценки для каждого члена ряда, позволившие доказать сходимость ряда и его производных до второго порядка включительно, а также теорему существования в классе регулярных решений.
Ключевые слова:
задача Келдыша, уравнение смешанного типа, спектральный метод, сингулярный коэффициент, функция Бесселя.
Поступила в редакцию: 25.09.2019
Образец цитирования:
К. Т. Каримов, “Задача Келдыша для трехмерного уравнения смешанного типа с тремя сингулярными коэффициентами в полубесконечном параллелепипеде”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 30:1 (2020), 31–48
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vuu708 https://www.mathnet.ru/rus/vuu/v30/i1/p31
|
Статистика просмотров: |
Страница аннотации: | 366 | PDF полного текста: | 152 | Список литературы: | 36 |
|