|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
МАТЕМАТИКА
Регуляризованный итерационный принцип максимума Понтрягина в оптимальном управлении. II. Оптимизация распределенной системы
Ф. А. Кутерин, М. И. Сумин Нижегородский государственный университет им. Н.И. Лобачевского, 603950, Россия, г. Нижний Новгород, пр. Гагарина, 23
Аннотация:
Для задачи оптимального управления линейным параболическим уравнением с распределенным, начальным и граничным управлениями и с операторным полуфазовым ограничением типа равенства формулируется устойчивый секвенциальный, или, другими словами, регуляризованный, принцип максимума Понтрягина в итерационной форме. Его главное отличие от классического принципа максимума Понтрягина заключается в том, что он, во-первых, формулируется в терминах минимизирующих последовательностей, во-вторых, имеет форму итерационного процесса в пространстве двойственных переменных и, наконец, в-третьих, устойчиво к ошибкам исходных данных оптимизационной задачи порождает в ней минимизирующее приближенное решение в смысле Дж. Варги, т.е. представляет собой регуляризирующий алгоритм. Доказательство регуляризованного принципа максимума Понтрягина в итерационной форме опирается на методы двойственной регуляризации и итеративной двойственной регуляризации. Приводятся результаты модельных расчетов при решении конкретной задачи оптимального управления, иллюстрирующих работу алгоритма, основанного на регляризованном итерационном принципе максимума Понтрягина. В качестве конкретной оптимизационной задачи рассмотрена задача поиска минимальной по норме тройки управлений при операторном ограничении-равенстве в финальный момент времени, или, другими словами, обратная задача финального наблюдения по поиску ее нормального решения.
Ключевые слова:
оптимальное управление, неустойчивость, итеративная двойственная регуляризация, регуляризованный итерационный принцип Лагранжа, регуляризованный итерационный принцип максимума Понтрягина.
Поступила в редакцию: 05.11.2016
Образец цитирования:
Ф. А. Кутерин, М. И. Сумин, “Регуляризованный итерационный принцип максимума Понтрягина в оптимальном управлении. II. Оптимизация распределенной системы”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 27:1 (2017), 26–41
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vuu566 https://www.mathnet.ru/rus/vuu/v27/i1/p26
|
Статистика просмотров: |
Страница аннотации: | 3305 | PDF полного текста: | 198 | Список литературы: | 79 |
|