|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
МАТЕМАТИКА
Регуляризованный итерационный принцип максимума Понтрягина в оптимальном управлении. I. Оптимизация сосредоточенной системы
Ф. А. Кутерин, М. И. Сумин Нижегородский государственный университет им. Н. И. Лобачевского, 603950, Россия, г. Нижний Новгород, пр. Гагарина, 23
Аннотация:
Для задачи оптимального управления системой обыкновенных дифференциальных уравнений с поточечным фазовым ограничением типа равенства и конечным числом функциональных ограничений типа равенства и неравенства формулируется устойчивый секвенциальный, или, другими словами, регуляризованный, принцип максимума Понтрягина в итерационной форме. Его главное отличие от классического принципа максимума Понтрягина заключается в том, что он, во-первых, формулируется в терминах минимизирующих последовательностей, во-вторых, имеет форму итерационного процесса в пространстве двойственных переменных и, наконец, в-третьих, устойчиво к ошибкам исходных данных оптимизационной задачи порождает в ней минимизирующее приближенное решение в смысле Дж. Варги, т. е. представляет собою регуляризирующий алгоритм. Доказательство регуляризованного принципа максимума Понтрягина в итерационной форме опирается на методы двойственной регуляризации и итеративной двойственной регуляризации.
Ключевые слова:
оптимальное управление, неустойчивость, итеративная двойственная регуляризация, регуляризованный итерационный принцип Лагранжа, регуляризованный итерационный принцип максимума Понтрягина.
Поступила в редакцию: 15.09.2016
Образец цитирования:
Ф. А. Кутерин, М. И. Сумин, “Регуляризованный итерационный принцип максимума Понтрягина в оптимальном управлении. I. Оптимизация сосредоточенной системы”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 26:4 (2016), 474–489
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vuu554 https://www.mathnet.ru/rus/vuu/v26/i4/p474
|
Статистика просмотров: |
Страница аннотации: | 497 | PDF полного текста: | 196 | Список литературы: | 70 |
|