Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2015, том 25, выпуск 1, страницы 21–28 (Mi vuu461)  

МАТЕМАТИКА

Неосцилляция решений дифференциального уравнения второго порядка с обобщенными функциями Коломбо в коэффициентах

И. Г. Ким

Кафедра математического анализа, Удмуртский государственный университет, Россия, г. Ижевск, ул. Университетская, 1 (корп. 4)
Список литературы:
Аннотация: Рассматривается уравнение
\begin{equation} Lx\doteq x''+P(t)x'+Q(t)x=0,\qquad t\in[a, b]\subset\mathcal I\doteq(\alpha,\beta)\subset\mathbb R, \end{equation}
где $P,Q$ – $C$-обобщенные функции, определенные на $\mathcal I$ и представляющие собой смежные классы фактор-алгебры Коломбо. Пусть $\mathcal R_P$, $\mathcal R_Q$ – представители этих классов соответственно, $\mathcal A_N$ – классы финитных функций, необходимые для определения алгебры Коломбо. Получены новые достаточные условия неосцилляции уравнения (1): доказано, что если выполнено условие
\begin{equation*} (\exists N\in\mathbb N)\,(\forall\varphi\in\mathcal A_N)\,(\exists\mu_0<1)\ \int_a^b|\mathcal R_P(\varphi_\mu,t)|\,dt+\int_a^b|\mathcal R_Q(\varphi_\mu,t)|\,dt<\frac4{b-a+4}\quad(0<\mu<\mu_0), \end{equation*}
где $\varphi_\mu\doteq\frac1\mu\varphi\left(\frac t\mu\right)$, то уравнение (1) неосцилляционно на $[a,b]$. Доказана теорема о разделении нулей и следствие, вытекающее из нее.
Ключевые слова: $C$-обобщенная функция, $C$-обобщенное число, слабое равенство, неосцилляция.
Поступила в редакцию: 18.01.2015
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.917
MSC: 46F30
Образец цитирования: И. Г. Ким, “Неосцилляция решений дифференциального уравнения второго порядка с обобщенными функциями Коломбо в коэффициентах”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 25:1 (2015), 21–28
Цитирование в формате AMSBIB
\RBibitem{Kim15}
\by И.~Г.~Ким
\paper Неосцилляция решений дифференциального уравнения второго порядка с~обобщенными функциями Коломбо в~коэффициентах
\jour Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки
\yr 2015
\vol 25
\issue 1
\pages 21--28
\mathnet{http://mi.mathnet.ru/vuu461}
\elib{https://elibrary.ru/item.asp?id=23142047}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/vuu461
  • https://www.mathnet.ru/rus/vuu/v25/i1/p21
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Статистика просмотров:
    Страница аннотации:304
    PDF полного текста:190
    Список литературы:54
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024