Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2012, выпуск 3, страницы 3–12 (Mi vuu331)  

Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)

МАТЕМАТИКА

О некоторых краевых задачах для нагруженных интегро-дифференциальных уравнений третьего порядка с действительными параметрами

У. И. Балтаева

Кафедра математической физики и прикладной математики, Ургенчский государственный университет, Узбекистан, Ургенч
Список литературы:
Аннотация: Рассматривается линейное нагруженное интегро-дифференциальное уравнение с гиперболическим оператором
$$ \frac\partial{\partial x}\left(u_{xx}-u_{yy}-\lambda u\right)=\mu\sum_{i=1}^na_i(x)D_{0x}^{\alpha _i}u_y(x,0), $$
и нагруженное интегро-дифференциальное уравнение со смешанным оператором
$$ \frac\partial{\partial x}\left(u_{xx}-\frac{1-\operatorname{sgn}y}2u_{yy}-\frac{1+\operatorname{sgn}y}2u_y-\lambda u\right)=\mu\sum_{i=1}^na_i(x)D_{0x}^{\alpha_i}u_y(x,0), $$
где $D_{0x}^{\alpha_i}$ – интегро-дифференциальный оператор (в смысле Римана–Лиувилля), $a_i(x)$ – коэффициенты, $\lambda,\mu$ – действительные постоянные, причем $\lambda>0$. Данная работа посвящена постановке и исследованию однозначной разрешимости краевых задач (типа задачи Дарбу, задачи Трикоми) для нагруженного интегро-дифференциального уравнения третьего порядка с гиперболическим и параболо-гиперболическим оператором. Существование и единственность решения краевой задачи доказана методом интегральных уравнений. Задачи эквивалентным образом сводятся к интегральным уравнениям Вольтерра со сдвигом. При достаточных условиях на заданные функции и коэффициенты доказывается однозначная разрешимость полученных интегральных уравнений.
Ключевые слова: нагруженное уравнение, уравнения смешанного типа, интегро-дифференциальное уравнение, интегральное уравнение со сдвигом, функция Бесселя.
Поступила в редакцию: 07.04.2012
Тип публикации: Статья
УДК: 517.956
MSC: 35M10, 35L35
Образец цитирования: У. И. Балтаева, “О некоторых краевых задачах для нагруженных интегро-дифференциальных уравнений третьего порядка с действительными параметрами”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 2012, № 3, 3–12
Цитирование в формате AMSBIB
\RBibitem{Bal12}
\by У.~И.~Балтаева
\paper О некоторых краевых задачах для нагруженных интегро-дифференциальных уравнений третьего порядка с~действительными параметрами
\jour Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки
\yr 2012
\issue 3
\pages 3--12
\mathnet{http://mi.mathnet.ru/vuu331}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/vuu331
  • https://www.mathnet.ru/rus/vuu/y2012/i3/p3
  • Эта публикация цитируется в следующих 3 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Статистика просмотров:
    Страница аннотации:350
    PDF полного текста:198
    Список литературы:59
    Первая страница:1
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024