|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
МАТЕМАТИКА
Разложение по собственным функциям магнитного оператора Шредингера в ограниченных областях
А. Р. Алиевab, Ш. Ш. Раджабовa a Institute of Mathematics and Mechanics of Azerbaijan
National Academy of Sciences, Baku city, Azerbaijan
b Azerbaijan State Oil and Industry University, Baku city, Azerbaijan
Аннотация:
Вводится магнитный оператор Шредингера, соответствующий обобщенной задаче Дирихле. Доказывается его самосопряженность и дискретность спектра в ограниченных областях в многомерном случае, а также базисность его собственных функций в пространстве Лебега и магнитном соболевском пространстве. Дается новая характеристика области определения магнитного оператора Шредингера. Исследуется существование и единственность решения магнитного уравнения Шредингера со спектральным параметром. Доказывается, что если спектральный параметр отличен от собственных значений, то первая обобщенная задача Дирихле имеет единственное решение. Находится условие разрешимости обобщенной задачи Дирихле при совпадении спектрального параметра с собственным значением магнитного оператора Шредингера.
Ключевые слова:
магнитный оператор Шредингера, дискретный спектр, собственные значения и собственные функции, разложение по собственным функциям, теоремы существования и единственности решений.
Статья поступила: 25.05.2020
Образец цитирования:
А. Р. Алиев, Ш. Ш. Раджабов, “Разложение по собственным функциям магнитного оператора Шредингера в ограниченных областях”, Вестн. Томск. гос. ун-та. Матем. и мех., 2021, № 69, 5–14
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vtgu823 https://www.mathnet.ru/rus/vtgu/y2021/i69/p5
|
Статистика просмотров: |
Страница аннотации: | 148 | PDF полного текста: | 63 | Список литературы: | 33 |
|