|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
МАТЕМАТИКА
Задача Хольмгрена для многомерного эллиптического уравнения с двумя сингулярными коэффициентами
Т. Г. Эргашевa, Н. Д. Комиловаb a V.I. Romanovskiy Institute of Mathematics, Tashkent, Uzbekistan
b Fergana State University, Fergana, Uzbekistan
Аннотация:
Основные краевые задачи для двумерного и трехмерного эллиптических уравнений с двумя сингулярными коэффициентами в конечной и бесконечной областях изучались многими авторами, однако исследование задачи Хольмгрена ограничивалось двумерным случаем. Настоящая работа посвящена нахождению единственного решения задачи Хольмгрена для многомерного эллиптического уравнения с двумя сингулярными коэффициентами в области, ограниченной в одной четверти пространства. Используя свойства одного из фундаментальных решений, построена функция Грина и с помощью известной формулы разложения для гипергеометрической функции Аппеля от двух переменных решение поставленной задачи в конечной области, ограниченной с двумя перпендикулярными гиперплоскостями и четвертью многомерной сферы, найдено в явном виде.
Ключевые слова:
многомерное эллиптическое уравнение с двумя сингулярными коэффициентами, задача Хольмгрена, фундаментальное решение, формула Гаусса–Остроградского, функция Грина.
Статья поступила: 30.11.2019
Образец цитирования:
Т. Г. Эргашев, Н. Д. Комилова, “Задача Хольмгрена для многомерного эллиптического уравнения с двумя сингулярными коэффициентами”, Вестн. Томск. гос. ун-та. Матем. и мех., 2020, № 63, 47–59
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vtgu755 https://www.mathnet.ru/rus/vtgu/y2020/i63/p47
|
Статистика просмотров: |
Страница аннотации: | 214 | PDF полного текста: | 71 | Список литературы: | 38 |
|