|
Научные статьи
Вариационный принцип Экланда в квазиметрических пространствах
Р. Сенгуптаab a АНОО ВО «Сколковский институт науки и технологий»
b ФГБОУ ВО «Тамбовский государственный университет им. Г.Р. Державина»
Аннотация:
В работе исследуются вещественнозначные функции, определенные на квазиметрических пространствах. Для них получено обобщение вариационного принципа Экланда и аналогичного утверждения из статьи [S. Cobzas, “Completeness in quasi-metric spaces and Ekeland Variational Principle”, Topology and its Applications, vol. 158, no. 8, pp. 1073–1084, 2011]. Приведенная здесь модификация вариационного принципа применима, в частности, к широкому классу неограниченных снизу функций. Полученный результат применен к исследованию минимумов функций, определенных на квазиметрических пространствах. Сформулировано условие типа Каристи для сопряженно-полных квазиметрических пространств. Показано, что предложенное условие типа Каристи является достаточным условием существования минимума для полунепрерывных снизу функций, действующих в сопряженно-полных квазиметрических пространствах.
Ключевые слова:
вариационный принцип Экланда, квазиметрические пространства, неограниченные снизу функции.
Поступила в редакцию: 15.07.2023 Принята в печать: 12.09.2023
Образец цитирования:
Р. Сенгупта, “Вариационный принцип Экланда в квазиметрических пространствах”, Вестник российских университетов. Математика, 28:143 (2023), 268–276
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vtamu296 https://www.mathnet.ru/rus/vtamu/v28/i143/p268
|
Статистика просмотров: |
Страница аннотации: | 90 | PDF полного текста: | 46 | Список литературы: | 19 |
|