|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Научные статьи
Разрешение алгебро-дифференциального уравнения второго порядка относительно производной
В. И. Усков ФГБОУ ВО «Воронежский государственный лесотехнический университет имени Г. Ф. Морозова»
Аннотация:
В статье рассматривается алгебро-дифференциальное уравнение второго порядка. Уравнениями и системами дифференциальных уравнений второго порядка описывается работа схемы электронного триода с обратной связью, вращение жесткого тела с полостью, считывание информации с диска и т. д. Перед старшей производной находится необратимый оператор. Этот оператор фредгольмов с нулевым индексом, обладающий ядром произвольной размерности и цепочками Жордана произвольной длины. Уравнения с необратимыми операторами при старшей производной называются алгебродифференциальными. В связи с этим решение задачи существует при определенных условиях на компоненты искомой функции. Для разрешения уравнения относительно производной применяется метод каскадной декомпозиции уравнения, заключающегося в пошаговом расщеплении уравнения на уравнения в подпространствах уменьшающихся размерностей. Рассмотрены случаи одношагового и двухшагового расщепления. При расщеплении используется результат о решении линейного уравнения с фредгольмовым оператором. В каждом случае получен результат, сформулированный в виде теоремы. Для иллюстрации полученного результата в случае одношагового расщепления приводится иллюстрирующий пример задачи Коши.
Ключевые слова:
алгебро-дифференциальное уравнение второго порядка, банахово пространство, фредгольмов оператор, каскадная декомпозиция, задача Коши.
Поступила в редакцию: 17.08.2021
Образец цитирования:
В. И. Усков, “Разрешение алгебро-дифференциального уравнения второго порядка относительно производной”, Вестник российских университетов. Математика, 26:136 (2021), 414–420
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vtamu242 https://www.mathnet.ru/rus/vtamu/v26/i136/p414
|
|