Вестник российских университетов. Математика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестник российских университетов. Математика:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестник российских университетов. Математика, 2020, том 25, выпуск 131, страницы 307–330
DOI: https://doi.org/10.20310/2686-9667-2020-25-131-307-330
(Mi vtamu188)
 

Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)

Научные статьи

Недифференциальные теоремы Куна–Таккера в задачах на условный экстремум и субдифференциалы негладкого анализа

М. И. Суминab

a Нижегородский государственный университет им. Н.И. Лобачевского
b ФГБОУ ВО "Тамбовский государственный университет им. Г.Р. Державина"
Список литературы:
Аннотация: Статья посвящена получению теорем Куна–Таккера в недифференциальной форме в задачах на условный экстремум в гильбертовом пространстве. Ограничения задач задаются операторами, образы которых также вкладываются в гильбертово пространство. Эти ограничения содержат аддитивно входящие в них параметры. В основе получения недифференциальных теорем Куна–Таккера лежит так называемый метод возмущений. Статья состоит из двух основных разделов. Первый из них посвящен получению недифференциального принципа Лагранжа в том случае, когда задача на условный экстремум является выпуклой. Теорема Куна–Таккера есть «регулярная часть» этого принципа Лагранжа. Здесь приводятся также различные утверждения, связывающие множители Лагранжа со свойствами субдифференцируемости выпуклой функций значений задачи. Основное предназначение первого раздела состоит в том, чтобы проследить, как классическая конструкция функции Лагранжа в ее регулярном и нерегулярном вариантах «порождается» субдифференциалами и асимптотическими субдифференциалами функции значений. Данное обстоятельство и результаты первого раздела позволяют перекинуть естественный мостик от выпуклых параметрических задач на условный экстремум к аналогичным нелинейным параметрическим задачам второго основного раздела, в которых функция значений, вообще говоря, не является выпуклой. Центральную роль здесь играют уже не субдифференциалы в смысле выпуклого анализа, а субдифференциалы негладкого (нелинейного) анализа. Как следствие, в этом случае в качестве основной конструкции выступает так называемая модифицированная (не классическая) функция Лагранжа. Ее конструкция полностью зависит от того, как понимается субдифференцируемость в смысле негладкого (нелинейного) анализа.
Ключевые слова: задача на условный экстремум, недифференциальная теорема Куна-Таккера, метод возмущений, функция значений, выпуклый анализ, негладкий (нелинейный) анализ, субдифференциалы.
Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 19-07-00782_а
20-01-00199_а
20-52-00030 Бел_а
Работа выполнена при поддержке РФФИ (проекты № 19-07-00782_а, № 20-01-00199_а, № 20-52-00030 Бел_а).
Поступила в редакцию: 03.06.2020
Тип публикации: Статья
УДК: 519.85
Образец цитирования: М. И. Сумин, “Недифференциальные теоремы Куна–Таккера в задачах на условный экстремум и субдифференциалы негладкого анализа”, Вестник российских университетов. Математика, 25:131 (2020), 307–330
Цитирование в формате AMSBIB
\RBibitem{Sum20}
\by М.~И.~Сумин
\paper Недифференциальные теоремы Куна--Таккера в задачах на
условный экстремум и субдифференциалы негладкого анализа
\jour Вестник российских университетов. Математика
\yr 2020
\vol 25
\issue 131
\pages 307--330
\mathnet{http://mi.mathnet.ru/vtamu188}
\crossref{https://doi.org/10.20310/2686-9667-2020-25-131-307-330}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/vtamu188
  • https://www.mathnet.ru/rus/vtamu/v25/i131/p307
  • Эта публикация цитируется в следующих 5 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник российских университетов. Математика
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025