Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления, 2021, том 17, выпуск 3, страницы 262–276
DOI: https://doi.org/10.21638/11701/spbu10.2021.304
(Mi vspui495)
 

Прикладная математика

РС-решения и квазирешения интервальной системы линейных алгебраических уравнений

С. И. Носковa, А. В. Лакеевb

a Иркутский государственный университет путей сообщения, Российская Федерация, 664074, Иркутск, ул. Чернышевского, 15
b Институт динамики систем и теории управления им. В. М. Матросова СО РАН, Российская Федерация, 664033, Иркутск, ул. Лермонтова, 134
Список литературы:
Аннотация: К задачам интенсивно развивающегося в последнее время интервального анализа относится проблема решения интервальной системы линейных алгебраических уравнений (ИСЛАУ). В общем случае этим решением является множество, которое может быть задано по-разному, в зависимости от того, какими кванторами связаны элементы левой и правой частей ИСЛАУ. Каждое подлежащее определению множество решений ИСЛАУ описывается областью совместности соответствующей системы линейных неравенств и в общем случае одного нелинейного условия типа дополнительности. При решении конкретных задач с ним работать затруднительно. Поэтому в случае непустоты множества решений ИСЛАУ предлагается искать ее так называемое РС-решение, основанное на использовании известного в теории многокритериального выбора приема, который предполагает максимизацию разрешающей способности системы неравенств. В случае же пустоты такого множества следует искать квазирешение ИСЛАУ. Проведено сравнение описанного подхода к поиску РС- и квазирешений ИСЛАУ с подходом, предложенным С. П. Шарым и основанным на применении распознающего функционала.
Ключевые слова: интервальная система линейных алгебраических уравнений, AE-решения, РС-решение, квазирешение, распознающий функционал, задача линейного программирования.
Поступила: 3 октября 2020 г.
Принята к печати: 4 июня 2021 г.
Тип публикации: Статья
УДК: 519.61
MSC: 65G40
Образец цитирования: С. И. Носков, А. В. Лакеев, “РС-решения и квазирешения интервальной системы линейных алгебраических уравнений”, Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 17:3 (2021), 262–276
Цитирование в формате AMSBIB
\RBibitem{NosLak21}
\by С.~И.~Носков, А.~В.~Лакеев
\paper РС-решения и~квазирешения интервальной системы линейных алгебраических уравнений
\jour Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр.
\yr 2021
\vol 17
\issue 3
\pages 262--276
\mathnet{http://mi.mathnet.ru/vspui495}
\crossref{https://doi.org/10.21638/11701/spbu10.2021.304}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/vspui495
  • https://www.mathnet.ru/rus/vspui/v17/i3/p262
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Статистика просмотров:
    Страница аннотации:151
    PDF полного текста:15
    Список литературы:36
    Первая страница:20
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024